Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gibt es doch elektrische Ströme in einem Isolator?

04.10.2012
Forscher des Max-Born-Instituts in Berlin beobachteten einen extrem schnellen Austausch von Elektronen zwischen benachbarten Atomen nach Anlegen eines starken optischen Feldes an einen Isolator. Die räumliche Elektronendichte konnte mit Hilfe von ultrakurzen Röntgenblitzen direkt abgebildet werden.

Schon in der Schule lernt man, dass jedes Material, insbesondere die Festkörper, entweder als Metall oder Isolator klassifiziert werden kann. Wenn man Pole einer Batterie mit einem Stück Metall verbindet, fließen Elektronen vom Minuspol zum Pluspol, d.h. die angelegte Spannung erzeugt einen elektrischen Strom.


Der Cartoon zeigt die Elektronbewegung zwischen benachbarten Atomen in einem LiBH4-Kristall. (mehr unter PM-Text)

Wenn man das gleiche Experiment mit einem Stück nichtleitenden Material macht, misst man dagegen gar keinen elektrischen Strom. Man könnte sich daher fragen, ob die Elektronen in einem Isolator sich überhaupt bewegen, wenn sie einem starken Feld (Spannung) ausgesetzt sind. Und, falls sie sich doch bewegen: wie weit und wie schnell ?

Um diese grundlegende Frage zu beantworten, muss man die Position der Elektronen im Material mit einer räumlichen Genauigkeit von 0.1 nm (0.1 nm=10-10 m) messen, was ungefähr den Abstand zwischen benachbarten Atomen entspricht. Das ist möglich, wenn man das Material mit Röntgenstrahlen abbildet, die von Elektronen gestreut werden und über deren räumliche Verteilung Auskunft geben. Zusätzlich muss man ein sehr starkes elektrisches Feld anlegen um die Elektronen von ihren Ursprungsatomen wegzuziehen. Extrem starke elektrische Felder kann man für sehr kurze Zeiten (50 fs, 1 fs = 10-15 s) mittels optischer Lichtimpulse erzeugen.

In der aktuellen Ausgabe von Physical Review Letters (PRL 109, 147402 (2012)) berichten Johannes Stingl, Flavio Zamponi, Benjamin Freyer, Michael Woerner, Thomas Elsaesser und Andreas Borgschulte über die erste in-situ Röntgenabbildung von Elektronen- und Atombewegungen, die von einem starken optischen Feld ausgelöst wurden. Sie haben für das Prototypmaterial LiBH4 eine zeitabhängige „Elektronendichte-Landkarte“ aufgenommen, die aus einer Reihe Schnappschüssen mittels ultrakurzer Röntgenblitze (100 fs) gewonnen wurde. Schnappschüsse zu verschiedenen Zeiten während und nach dem Lichtimpuls bilden einen "Röntgenfilm", der die atomaren und elektronischen Bewegungen im LiBH4-Kristall sichtbar macht.

Zur großen Überraschung der Forscher fand während des zeitlichen Überlapps zwischen optischem Lichtimpuls und Röntgenblitz ein extrem schneller Elektrontransfer von dem BH4-- zu dem benachbarten Li+-Ion statt, das ca. 0.25 nm entfernt liegt. Da das elektrische Feld des Lichtes seine Richtung alle 1.3 fs umkehrt, wird das Elektron zwischen zwei Orten mit sehr hoher Geschwindigkeit, etwa 1 % der Lichtegeschwindigkeit (c = 300.000 km / s) hin und her bewegt. Nach dem Lichtimpuls kehrt das Elektron zu dem BH4--Ion zurück und die ursprüngliche Elektronverteilung ist wiederhergestellt. Neben diesem instantanen und reversiblen Elektrontransfer gibt es keine makroskopischen Ströme, d.h. das Material verhält sich wie ein Isolator.

Eine quantitative Analyse zeigt, dass die große Auslenkung der Elektronen zwischen den benachbarten Ionen den Hauptbeitrag zur elektrischen Polarisation ausmacht und die Ursache für viele Nichtlinearitäten bei optischen Frequenzen darstellt. Neben den neuen Einblicken in fundamentale elektrische und optische Eigenschaften von Isolatoren bieten die Experimente an LiBH4 hohes Anwendungspotential für die zeitliche Charakterisierung von ultrakuren Röntgen-Impulsen.

Movie: (zu sehen unter http://www.fv-berlin.de)
Der Cartoon zeigt die Elektronbewegung zwischen benachbarten Atomen in einem LiBH4-Kristall. Die rote Kurve im oberen Teilbild zeigt das elektrische Feld des Laserlichts als Funktion der Zeit. Der sich bewegende blaue Punkt markiert die Stärke und Richtung des elektrischen Feldes für den entsprechenden Schnappschuss im unteren Teilbild. Dieser zeigt eine "Elektronendichte-Landkarte" der Einheitszelle eines LiBH4 Kristalls. Ohne Anlegen eines elektrischen Feldes haben die BH4--Anionen (sehr helle Regionen) eine größere Elektronendichte als die Li+ Kationen (dunklere Spots). Während des Laserimpulses treibt das oszillierende elektrische Feld starke elektrische Ströme zwischen den BH4- und Li+ Ionen, welche mittels der Intensität der auftretenden dreieckigen Pfeile angedeutet werden.
Contact:
Michael Woerner, Tel: +49-30-6392 1470, email: woerner@mbi-berlin.de
Flavio Zamponi, Tel: +49-30-6392 1472, email: zamponi@mbi-berlin.de
Thomas Elsaesser, Tel.: +49-30-6392 1400, email: elsasser@mbi-berlin.de

Saskia Donath | Forschungsverbund Berlin e.V.
Weitere Informationen:
http://www.fv-berlin.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Blauer Phosphor – jetzt erstmals vermessen und kartiert
15.10.2018 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Materiezustände durch Licht verändern
12.10.2018 | Universität Hamburg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Blauer Phosphor – jetzt erstmals vermessen und kartiert

Die Existenz von „Blauem“ Phosphor war bis vor kurzem reine Theorie: Nun konnte ein HZB-Team erstmals Proben aus blauem Phosphor an BESSY II untersuchen und über ihre elektronische Bandstruktur bestätigen, dass es sich dabei tatsächlich um diese exotische Phosphor-Modifikation handelt. Blauer Phosphor ist ein interessanter Kandidat für neue optoelektronische Bauelemente.

Das Element Phosphor tritt in vielerlei Gestalt auf und wechselt mit jeder neuen Modifikation auch den Katalog seiner Eigenschaften. Bisher bekannt waren...

Im Focus: Chemiker der Universitäten Rostock und Yale zeigen erstmals Dreierkette aus gleichgeladenen Ionen

Die Forschungskooperation zwischen der Universität Yale und der Universität Rostock hat neue wissenschaftliche Ergebnisse hervorgebracht. In der renommierten Zeitschrift „Angewandte Chemie“ berichten die Wissenschaftler über eine Dreierkette aus Ionen gleicher Ladung, die durch sogenannte Wasserstoffbrücken zusammengehalten werden. Damit zeigen die Forscher zum ersten Mal eine Dreierkette aus gleichgeladenen Ionen, die sich im Grunde abstoßen.

Die erfolgreiche Zusammenarbeit zwischen den Professoren Mark Johnson, einem weltbekannten Cluster-Forscher, und Ralf Ludwig aus der Physikalischen Chemie der...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Materiezustände durch Licht verändern

Forscherinnen und Forscher der Universität Hamburg stören die kristalline Ordnung

Physikerinnen und Physikern der Universität Hamburg ist es gelungen, mithilfe von Laserpulsen die Ordnung von Quantenmaterie so zu stören, dass ein spezieller...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Neurowoche 2018: 7000 Experten für Gehirn und Nerven tagen in Berlin

15.10.2018 | Veranstaltungen

Berlin5GWeek: Private Industrienetze und temporäre 5G-Inseln

15.10.2018 | Veranstaltungen

PV Days in Halle zeigen neue Chancen für die Photovoltaik

11.10.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Smart Glasses Guide: Neues Tool zur Auswahl von Datenbrillen und Anwendungen

15.10.2018 | Informationstechnologie

Neurowoche 2018: 7000 Experten für Gehirn und Nerven tagen in Berlin

15.10.2018 | Veranstaltungsnachrichten

Grauer Star: Neues Verfahren bei der Katarakt-Operation

15.10.2018 | Medizintechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics