Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Genauer als Heisenberg erlaubt? Die Unschärfe in Gegenwart eines Quantenspeichers

26.07.2010
Ein Quantenteilchen ist schwer zu fassen, denn nicht alle seine Eigenschaften können gleichzeitig exakt gemessen werden. Für bestimmte Parameterpaare – zum Beispiel Ort und Impuls – bleibt ein Rest an Ungenauigkeit, festgelegt durch die Unschärferelation von Heisenberg.

Das ist ein wichtiger Aspekt für die Quantenkryptographie, denn hier werden Informationen in Form von Quantenzuständen übertragen, etwa als Polarisation von Lichtteilchen. Eine Gruppe von Wissenschaftlern der LMU München und der ETH Zürich, unter ihnen Professor Matthias Christandl, konnten nun Folgendes zeigen: Ort und Impuls lassen sich besser vorhersagen als es von Heisenbergs Unschärferelation zu erwarten wäre, wenn der Empfänger einen Quantenspeicher, aufgebaut aus Ionen oder Atomen, zu Hilfe nimmt.

Erstmals wurde so gezeigt, dass die Unschärfe von der Stärke der Korrelation zwischen dem Quantenspeicher und dem Quantenteilchen abhängt. „Unser Ergebnis trägt nicht nur zu einem besseren Verständnis von Quantenspeichern bei, sondern resultiert auch in einem Verfahren, die Korrelation zweier Quantenteilchen zu bestimmen“, sagt Christandl. „Der Zusammenhang könnte auch helfen, die Sicherheit von quantenkryptographischen Systemen zu überprüfen.“ (Nature Physics online, 25. Juli 2010)

Quantencomputer rechnen nicht wie klassische Computer mit Bits, sondern mit sogenannten Quantenbits oder Qubits, also quantenmechanischen Zuständen eines Teilchens. Das Besondere an Quantenteilchen ist, dass sie mehrere Zustände gleichzeitig annehmen können, also 0 oder 1 oder eine Überlagerung aus 0 und 1. Die Möglichkeit der Überlagerung eröffnet dem Quantencomputer enormes neues Rechenpotential. „Wir wollen mit unseren Forschungen herausfinden, wie Quantenspeicher, also Speicher für Quantenbits, in Zukunft genutzt werden können und wie sie die Übertragung von Quantenbits beeinflussen,“ erklärt Christandl, der im Juni 2010 von der LMU München an die ETH Zürich wechselte.

Die Heisenbergsche Unschärferelation ist ein zentraler Aspekt von Quantencomputern. Sie legt fest, wie genau ein Quantenzustand bestimmt werden kann. Umgekehrt besagt die Quantenmechanik, dass schon die Wahl der Messmethode den Zustand des Quantenteilchens ändern kann. Sobald eine Größe exakt gemessen wird, fällt das Teilchen für den anderen Parameter in den maximal unbestimmten Zustand. Dieses Prinzip macht sich die Quantenkryptographie zur Verschlüsselung von Daten zunutze. Sie verwendet unter anderem Quantenteilchen, deren Zustand so korreliert ist, dass die Wahrscheinlichkeit, mit der die Messung des einen Teilchens ein bestimmtes Ergebnis liefert, vom Zustand des anderen Teilchens abhängt. Ein Abhörversuch würde auffliegen, weil die Messung den Zustand des „abgehörten“ Teilchens verändert.

Das Forscherteam der ETH Zürich und der LMU München konnte nun zeigen, dass sich das Messergebnis eines Quantenteilchens besser vorhersagen lässt, wenn Information über das Teilchen in einem Quantenspeicher zur Verfügung steht. Ein Quantenspeicher kann zum Beispiel aus Ionen oder Atomen aufgebaut sein. Damit wurde erstmals eine Formulierung der Heisenbergschen Unschärferelation hergeleitet, welche den Einfluss eines Quantenspeichers in Betracht zieht. Bei sehr stark korrelierten, verschränkten Teilchen kann die Unschärfe sogar ganz verschwinden. Christandl zieht einen Vergleich: „Man könnte sagen, dass die Unordnung oder Unbestimmtheit des Teilchens von den Informationen abhängt, die im Quantenspeicher enthalten sind. Das ist ähnlich wie bei Papieren auf einem Schreibtisch: Sie zeigen oft nur für denjenigen eine Ordnung, der sie dort platziert hat.“

„Unser Ergebnis trägt nicht nur zu einem besseren Verständnis von Quantenspeichern bei, sondern lässt auch die Korrelation zweier Quantenteilchen bestimmen“, sagt Christandl. „Der Zusammenhang könnte auch helfen, die Sicherheit von quantenkryptographischen Systemen zu überprüfen.“ Vorstellbar sei dies im Rahmen eines Spiels, wenn Spieler B an Spieler A ein Teilchen sendet. Die Messung durch A schaffe eine Unschärfe. „B kann nun ebenfalls messen, wird aber den von A ermittelten Wert nur bis zur Heisenbergschen Grenze treffen“, sagt der Physiker. „Verwendet er einen Quantenspeicher, wird er den gesuchten Wert treffen und das Spiel gewinnen.“ (CA)

Publikation:
“The Uncertainty Principle in the Presence of Quantum Memory“,
M. Berta, M. Christandl, R. Colbeck, J.M. Renes, R. Renner
Nature Physics, 25. Juli 2010
Ansprechpartner:
Prof. Dr. Matthias Christandl
Theoretische Physik, ETH Zürich
Tel.: +41 44 633 25 92
E-Mail: christandl@phys.ethz.ch

Luise Dirscherl | idw
Weitere Informationen:
http://www.ethz.ch

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Unser Gehirn behält das Unerwartete im Blick
17.08.2018 | Philipps-Universität Marburg

nachricht Eisen und Titan in der Atmosphäre eines Exoplaneten entdeckt
16.08.2018 | Universität Bern

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Farbeffekte durch transparente Nanostrukturen aus dem 3D-Drucker

Neues Design-Tool erstellt automatisch 3D-Druckvorlagen für Nanostrukturen zur Erzeugung benutzerdefinierter Farben | Wissenschaftler präsentieren ihre Ergebnisse diese Woche auf der angesehenen SIGGRAPH-Konferenz

Die meisten Objekte im Alltag sind mit Hilfe von Pigmenten gefärbt, doch dies hat einige Nachteile: Die Farben können verblassen, künstliche Pigmente sind oft...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Eisen und Titan in der Atmosphäre eines Exoplaneten entdeckt

Forschende der Universitäten Bern und Genf haben erstmals in der Atmosphäre eines Exoplaneten Eisen und Titan nachgewiesen. Die Existenz dieser Elemente in Gasform wurde von einem Team um den Berner Astronomen Kevin Heng theoretisch vorausgesagt und konnte nun von Genfern Astronominnen und Astronomen bestätigt werden.

Planeten in anderen Sonnensystemen, sogenannte Exoplaneten, können sehr nah um ihren Stern kreisen. Wenn dieser Stern viel heisser ist als unsere Sonne, dann...

Im Focus: Magnetische Antiteilchen eröffnen neue Horizonte für die Informationstechnologie

Computersimulationen zeigen neues Verhalten von Antiskyrmionen bei zunehmenden elektrischen Strömen

Skyrmionen sind magnetische Nanopartikel, die als vielversprechende Kandidaten für neue Technologien zur Datenspeicherung und Informationsverarbeitung gelten....

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

LaserForum 2018 thematisiert die 3D-Fertigung von Komponenten

17.08.2018 | Veranstaltungen

Aktuelles aus der Magnetischen Resonanzspektroskopie

16.08.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Oktober 2018

16.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Bionik im Leichtbau

17.08.2018 | Verfahrenstechnologie

Klimafolgenforschung in Hannover: Kleine Pflanzen gegen große Wellen

17.08.2018 | Biowissenschaften Chemie

HAWK-Ingenieurinnen und -Ingenieure entwickeln die leichteste 9to-LKW-Achse ihrer Art

17.08.2018 | Messenachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics