Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gefühl für Licht

13.01.2014
Ein Team vom Labor für Attosekundenphysik hat einen vereinfachten Detektor für die Bestimmung der Wellenform von Laserpulsen entwickelt.

Der perfekten Kontrolle über Lichtwellen ist ein Team vom Labor für Attosekundenphysik (LAP) einen Schritt näher gekommen.


Kurzpulslaser am Max-Planck-Institut für Quantenoptik emittieren Lichtblitze, die nur wenige Femtosekunden dauern. Ihre Wellenform kann man nun mit einem neuen Detektor aus Glas kontrollieren. (Foto: Thorsten Naeser)

Die Forscher vom Max-Planck-Institut für Quantenoptik (MPQ), der Ludwig-Maximilians-Universität München (LMU) und der TU München haben einen Detektor entwickelt, der ihnen detailliert verrät, wie die Schwingungen in einem nur wenige Femtosekunden dauernden Lichtpuls geformt sind.

Anders als bisherige Messgeräte besteht dieser Detektor aus Glas und misst elektrische Ströme zwischen zwei angebrachten Elektroden, die das elektrische Feld des Lichtpulses auslöst, sobald dieser in das Glas eindringt.

Über die Charakteristika des Stromflusses schließen die Forscher darauf, wie das Wellenbild des Lichtpulses aussehen muss. Kennt man seine Wellenform im Detail, ist man in der Lage, noch tausend Mal kürzere Attosekunden-Lichtblitze stabil zu erzeugen und mit ihnen den Mikrokosmos zu erforschen (Nature Photonics, DOI: 10.1038/nphoton. 2013.348, 12. Januar 2014).

Moderne Kurzpuls-Laser erzeugen Lichtpulse, die nur wenige Femtosekunden dauern (eine Femtosekunden ist ein Millionstel einer milliardstel Sekunde). Die Schwingungen ihrer eigentlichen Lichtwellen sind oft nur 2,5 Femtosekunden lang, d.h. sie schlagen gerade ein- oder zweimal kräftig nach oben oder nach unten aus. Vor und hinter diesen Ausschlägen gibt es nur kleine Schwingungsausläufer, die aber schnell verebben. In der Laserphysik ist es vor allem wichtig zu wissen, wie die starken Schwingungen in den Pulsen beschaffen sind. Damit kennt man ihre elektromagnetischen Felder und kann die Pulse gezielt in der Ultrakurzzeitphysik weiter verwenden.

Ein Team um Prof. Ferenc Krausz und den Doktoranden Tim Paasch-Colberg hat nun Glas verwendet um die Form der Lichtwellen in einem Femtosekundenpuls exakt zu bestimmen. In Experimenten der letzten Jahre haben die Forscher festgestellt, dass starke Laserpulse, die auf Glas auftreffen, messbare elektrische Ströme in dem Material erzeugen (Nature, 3. Januar 2013). Nun haben die Physiker festgestellt, dass die Fließrichtung dieser elektrischen Ströme von der Form der eingestrahlten Lichtwellen abhängt, wenn ein Femtosekunden-Laserpuls verwendet wird.

Für die Eichung ihres neuen Glasdetektors koppelten die Forscher ihr System mit einem herkömmlichen Messgerät für die Bestimmung von Licht-Wellenformen. Dieses „klassische“ Messinstrument misst im Vakuum, wie Elektronen aus Edelgasatomen herausgeschleudert werden, nachdem der Laserpuls diese getroffen hatte. Der Apparat funktioniert allerdings nur im Vakuum. Durch den Abgleich der in dem Glas induzierten Elektronenströme mit den Daten des herkömmlichen Messgeräts, können die Forscher nun das Glas als neuen Detektor für die Lichtwellen-Formen einsetzen. Das neue Messgerät vereinfacht die Ultrakurzzeitphysik enorm, denn man muss es nicht im Vakuum betreiben. Zudem ist seine Messtechnik und Handhabung sehr viel unkomplizierter als bisherige Methoden zur Bestimmung von Wellenformen.

Kennt man die Wellenform der Femtosekunden-Laserpulse, erzeugt man mit ihnen wiederum sehr stabil und reproduzierbar die noch tausend Mal kürzeren Attosekunden-Lichtblitze. Die Beschaffenheit der Attosekunden-Lichtblitze hängt also ab von der Wellenform der Femtosekunden-Laserpulse. Mit Attosekunden-Lichtblitzen kann man Elektronen in Atomen oder Molekülen „fotografieren“. Um gute „Bilder“ zu erhalten braucht man unterschiedliche Lichtblitze, je nachdem welche Materie man untersucht.

Verlässliche Beobachtungen des Mikrokosmos mit Hilfe individuell beschaffener Attosekunden-Lichtblitze könnten künftig einfacher zu bewerkstelligen sein, da nun ihre Quelle, also die Wellenform der Laserpulse, mit dem neuen Detektor aus Glas einfacher zu kontrollieren ist. Thorsten Naeser

Abbildung: Kurzpulslaser am Max-Planck-Institut für Quantenoptik emittieren Lichtblitze, die nur wenige Femtosekunden dauern. Ihre Wellenform kann man nun mit einem neuen Detektor aus Glas kontrollieren. (Foto: Thorsten Naeser)

Originalveröffentlichung:

Tim Paasch-Colberg, Agustin Schiffrin, Nicholas Karpowicz, Stanislav Kruchinin, Özge Saglam, Sabine Keiber, Olga Razskazovskaya, Sascha Mühlbrandt, Ali Alnaser, Matthias Kübel, Vadym Apalkov, Daniel Gerster, Joachim Reichert, Tibor Wittmann, Johannes V. Barth, Mark I. Stockman, Ralph Ernstorfer, Vladislav S. Yakovlev, Reinhard Kienberger und Ferenc Krausz
Solid-state light-phase detector
Nature Photonics, DOI:10.1038/nphoton.2013.348, 12. Januar 2014
Weitere Informationen erhalten Sie von:
Tim Paasch-Colberg
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1, Garching
Telefon: +49 (0)89 / 32 905 -651
E-Mail: tim.paasch-colberg@mpq.mpg.de
Prof. Ferenc Krausz
Lehrstuhl für Experimentalphysik,
Ludwig-Maximilians-Universität München,
Labor für Attosekundenphysik
Direktor am Max-Planck-Institut für Quantenoptik
Telefon: +49 (0)89 / 32 905 -600 / Fax: -649
E-Mail: ferenc.krausz@mpq.mpg.de
Dr. Olivia Meyer-Streng
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1, Garching
Telefon: +49 (0)89 / 32 905 -213
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Weitere Informationen:
http://www.attoworld.de/
http://www.mpq.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Unser Gehirn behält das Unerwartete im Blick
17.08.2018 | Philipps-Universität Marburg

nachricht Eisen und Titan in der Atmosphäre eines Exoplaneten entdeckt
16.08.2018 | Universität Bern

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Farbeffekte durch transparente Nanostrukturen aus dem 3D-Drucker

Neues Design-Tool erstellt automatisch 3D-Druckvorlagen für Nanostrukturen zur Erzeugung benutzerdefinierter Farben | Wissenschaftler präsentieren ihre Ergebnisse diese Woche auf der angesehenen SIGGRAPH-Konferenz

Die meisten Objekte im Alltag sind mit Hilfe von Pigmenten gefärbt, doch dies hat einige Nachteile: Die Farben können verblassen, künstliche Pigmente sind oft...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Eisen und Titan in der Atmosphäre eines Exoplaneten entdeckt

Forschende der Universitäten Bern und Genf haben erstmals in der Atmosphäre eines Exoplaneten Eisen und Titan nachgewiesen. Die Existenz dieser Elemente in Gasform wurde von einem Team um den Berner Astronomen Kevin Heng theoretisch vorausgesagt und konnte nun von Genfern Astronominnen und Astronomen bestätigt werden.

Planeten in anderen Sonnensystemen, sogenannte Exoplaneten, können sehr nah um ihren Stern kreisen. Wenn dieser Stern viel heisser ist als unsere Sonne, dann...

Im Focus: Magnetische Antiteilchen eröffnen neue Horizonte für die Informationstechnologie

Computersimulationen zeigen neues Verhalten von Antiskyrmionen bei zunehmenden elektrischen Strömen

Skyrmionen sind magnetische Nanopartikel, die als vielversprechende Kandidaten für neue Technologien zur Datenspeicherung und Informationsverarbeitung gelten....

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

LaserForum 2018 thematisiert die 3D-Fertigung von Komponenten

17.08.2018 | Veranstaltungen

Aktuelles aus der Magnetischen Resonanzspektroskopie

16.08.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Oktober 2018

16.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Bionik im Leichtbau

17.08.2018 | Verfahrenstechnologie

Klimafolgenforschung in Hannover: Kleine Pflanzen gegen große Wellen

17.08.2018 | Biowissenschaften Chemie

HAWK-Ingenieurinnen und -Ingenieure entwickeln die leichteste 9to-LKW-Achse ihrer Art

17.08.2018 | Messenachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics