Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bei der Geburt von Sternen zusehen

11.11.2011
Innsbrucker Physiker erforschen Entstehung interstellarer Moleküle
In interstellaren Wolken entstehen bei tiefen Temperaturen neue Moleküle. Aus diesen winzigen Bausteinen formieren sich über viele Millionen Jahre hinweg riesige Himmelskörper. Die Moleküle, die Sternen zur Geburt verhelfen können, untersuchen Innsbrucker Physiker um Prof. Roland Wester zusammen mit Partnern von der Universität Stockholm. Mithilfe ausgeklügelter Technik beobachten die Wissenschaftler im Labor, wie Kettenmoleküle in den Geburtsstätten der Sterne auf Licht reagieren.

Als Rekordhalter bei der Geburt neuer Himmelskörper gilt die „Galaxie Zw II 96“. Die 2008 entdeckte Formation ist 500 Millionen Lichtjahre entfernt. Sie trägt den Spitznamen „Baby Boomer Galaxy“, produziert sie doch jährlich laut astrophysikalischen Berechnungen viertausend Sterne. Im Vergleich dazu entsteht in unserer Galaxie, der Milchstraße, rund einmal pro Jahr ein neuer Himmelskörper. „Voraussetzung dafür sind ursächlich Reaktionen zwischen neutralen Molekülen und Ionen, also geladenen Teilchen. Diese Entstehungsprozesse sind schwer zu erforschen. Sie laufen schließlich unvorstellbar weit von uns entfernt über Jahrmillionen und unter den extremst harschen Bedingungen des Alls ab. Wer daher verstehen will, wie sich die ersten Bausteine von Sternen bilden, für den führt kein Weg vorbei an Laborastrophysik“, betont Wester.

Das All ins Labor holen
Der Experimentalphysiker hat zusammen mit seinen Mitarbeitern am Institut für Ionenphysik und Angewandte Physik der Universität Innsbruck nun ein neues Labor aufgebaut, in dem er die Vorgänge in den molekularen Riesenwolken erforschen kann. Herzstück ist eine eigens konstruierte Ionenfalle. Die jetzt in der Fachzeitschrift The Astrophysical Journal veröffentlichten Ergebnisse zeigen, dass die Wechselwirkung interstellarer Moleküle mit Licht mithilfe dieser ausgeklügelten Erfindung unter Weltraumbedingungen nachgestellt und analysiert werden kann. Die untersuchten negativen Molekül-Ionen werden dabei durch das Licht nicht so schnell zerstört, wie dies erwartet worden war. Das könnte erklären helfen, warum diese Ionen aus Kohlenstoff und Wasserstoff, die erst vor wenigen Jahren im Kosmos entdeckt worden waren, inzwischen in überraschend großer Häufigkeit in verschiedenen Gebieten in unserer Milchstraße gefunden wurden.
„Mit unserer Ionenfalle können wir vereinfacht gesagt, das All ins Labor holen. Sie hat bis zu 22 Elektroden und wird durch ein elektrisches Wechselfeld angetrieben. Stark abgekühlte Ionen können sich in dieser Apparatur in einem relativ weiten Bereich frei bewegen und werden dabei mit einem UV-Laser beschossen. Wenn zwei Teilchen reagieren, stören keine anderen, auch gibt es durch thermische Energie keine Einflüsse. Diese Verhältnisse der Versuchsanordnung entsprechen daher jenen in interstellaren Wolken. Dort verdichten sich Staubwolken, bilden unter dem Einfluss kosmischer Strahlung neue Moleküle und lassen schließlich Sterne entstehen“, erklärt Dr. Thorsten Best, der sich in der Arbeitsgruppe schon seit mehreren Jahren mit kalten Ionen in Fallen beschäftigt.

Forschungsfeld mit Überraschungen
Das Team rund um Wester will insgesamt einen Beitrag dazu leisten, die Entwicklung elementarer Moleküle im All besser zu verstehen. In diesem aktiven Forschungsfeld ist die Gruppe auch laufend mit Überraschungen konfrontiert. Bis zur Entdeckung der ersten negativ geladenen Kohlenstoffverbindungen im Kosmos im Jahr 2006 ging die Wissenschaft davon aus, dass interstellare Wolken nur positiv geladene Ionen enthalten. Kollisionen mit anderen Atomen oder Molekülen würden negativ geladene Teilchen, Anionen, genau so zerstören, wie UV-Licht. Auf unserer Erde würden diese Teilchen nur ganz kurz existieren können. In interstellaren Wolken dagegen werden sie kontinuierlich produziert und überleben viele Jahre. Übergeordnet wurde außerdem lange Zeit angenommen, dass extreme Kälte chemische Reaktionen überhaupt zum Stillstand bringt. Ionen sind allerdings insgesamt dafür verantwortlich, dass dem nicht so ist. Sie spielen bei der Entstehung elementarer Moleküle in den extremst kalten und dichten interstellaren Wolken eine Schlüsselrolle. Ionen sorgen dafür, dass sich sogar bei tiefsten Temperaturen von fünf bis fünfzig Kelvin, also bei rund Minus 268 bis 223 Grad Celsius, in den überwiegend aus Wasserstoff bestehenden Riesenwolken erste Kettenmoleküle, hauptsächlich aus Kohlenstoff und Wasserstoff bilden können. Bei der Geburt neuer Sterne stehen all diese Prozesse ganz am Anfang.

Publikation: Absolute photodetachment cross-section measurements for hydrocarbon chain anions. T. Best, R. Otto, S. Trippel, P. Hlavenka, A. von Zastrow, S. Eisenbach, S. Jezouin, R. Wester, E. Vigren, M. Hamberg, W. D. Geppert. The Astrophysical Journal, Volume 742 Number 2, 2011.
DOI: http://dx.doi.org/10.1088/0004-637X/742/2/63

Kontakt:
Univ.-Prof. Dr. Roland Wester
Institut für Ionenphysik und Angewandte Physik
Technikerstrasse 25, A-6020 Innsbruck
Telefon: +43 512 507-6420
Mail: roland.wester@uibk.ac.at
Web: http://www.uibk.ac.at/ionen-angewandte-physik/molsyst/

Mag.a Gabriele Rampl
Public Relations Ionenphysik
Telefon: +43 650 2763351
Mail: office@scinews.at
Web: http://www.scinews.at

Gabriele Rampl | SciNews
Weitere Informationen:
http://www.uibk.ac.at/ionen-angewandte-physik/molsyst/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neue Anwendungen für Mikrolaser in der Quanten-Nanophotonik
20.07.2018 | Technische Universität Berlin

nachricht Superscharfe Bilder von der neuen Adaptiven Optik des VLT
18.07.2018 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: Rostocker Forscher entwickeln autonom fahrende Kräne

Industriepartner kommen aus sechs Ländern

Autonom fahrende, intelligente Kräne und Hebezeuge – dieser Ingenieurs-Traum könnte in den nächsten drei Jahren zur Wirklichkeit werden. Forscher aus dem...

Im Focus: Superscharfe Bilder von der neuen Adaptiven Optik des VLT

Das Very Large Telescope (VLT) der ESO hat das erste Licht mit einem neuen Modus Adaptiver Optik erreicht, die als Lasertomografie bezeichnet wird – und hat in diesem Rahmen bemerkenswert scharfe Testbilder vom Planeten Neptun, von Sternhaufen und anderen Objekten aufgenommen. Das bahnbrechende MUSE-Instrument kann ab sofort im sogenannten Narrow-Field-Modus mit dem adaptiven Optikmodul GALACSI diese neue Technik nutzen, um Turbulenzen in verschiedenen Höhen in der Erdatmosphäre zu korrigieren. Damit ist jetzt möglich, Bilder vom Erdboden im sichtbaren Licht aufzunehmen, die schärfer sind als die des NASA/ESA Hubble-Weltraumteleskops. Die Kombination aus exquisiter Bildschärfe und den spektroskopischen Fähigkeiten von MUSE wird es den Astronomen ermöglichen, die Eigenschaften astronomischer Objekte viel detaillierter als bisher zu untersuchen.

Das MUSE-Instrument (kurz für Multi Unit Spectroscopic Explorer) am Very Large Telescope (VLT) der ESO arbeitet mit einer adaptiven Optikeinheit namens GALACSI. Dabei kommt auch die Laser Guide Stars Facility, kurz ...

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Stadtklima verbessern, Energiemix optimieren, sauberes Trinkwasser bereitstellen

19.07.2018 | Veranstaltungen

Innovation – the name of the game

18.07.2018 | Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neue Anwendungen für Mikrolaser in der Quanten-Nanophotonik

20.07.2018 | Physik Astronomie

Need for speed: Warum Malaria-Parasiten schneller sind als die menschlichen Abwehrzellen

20.07.2018 | Biowissenschaften Chemie

Die Gene sind nicht schuld

20.07.2018 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics