Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Galaktische Förderbänder füttern Sternentstehung

12.09.2019

Die Rolle von Magnetfeldern bei der Entstehung von Sternen wird seit Jahrzehnten unter Astrophysiker*innen stark diskutiert. Jetzt hat Juan Diego Soler vom Max-Planck-Institut für Astronomie (MPIA) gezeigt, dass Magnetfelder die Verdichtung von interstellarer Materie begünstigen und vorantreiben können – eine Vorbedingung für die Entstehung von Sternen. Diese Schlussfolgerung ergibt sich aus dem Befund, dass sich die interstellare Materie abhängig von ihrer Dichte mal parallel mal eher senkrecht zu den Magnetfeldlinien ausrichtet.

Sterne entstehen aus verdichteten Wolken des interstellaren Mediums (ISM). Das ISM setzt sich aus Gas (meist Wasserstoff) und kleinsten Teilchen aus Kohlenstoff und Silikaten zusammen, die Astrophysiker*innen Staub nennen. Erreicht das ISM eine genügend hohe Dichte, führt die Eigengravitation zu einem Kollaps der anfänglich kalten Materie bis hin zu heißen Sternen.


Illustration des Wechselspiels zwischen Magnetfeldern und dem interstellaren Medium.

Bild: Quetz/MPIA


Infrarotlicht und Magnetfeldlinien in Richtung der Orion A-Wolke.

Bild: Soler/MPIA

Wie sich solche Wolken jedoch bilden und verdichten, ist noch nicht völlig geklärt. Magnetfelder sind ein bedeutender Bestandteil des ISM [1] in der Milchstraße und anderen Galaxien. Sie tragen wesentlich zum Gesamtdruck bei, der das ISM gegen die Schwerkraft stabilisiert. Dennoch ist ihre genaue Rolle im Prozess der Sternentstehung Gegenstand lebhafter Diskussionen.

Um diesem Rätsel auf die Spur zu kommen, untersuchte Juan Diego Soler vom Max-Planck-Institut für Astronomie (MPIA) in Heidelberg die Ausrichtung von Magnetfeldern in Abhängigkeit von der Dichteverteilung in den nahegelegensten Regionen der Sternentstehung in Entfernungen von bis zu 450 Parsec (1450 Lichtjahren) von der Sonne. „Die Idee dabei ist, dass bei einem starken Einfluss auf das ISM, das Magnetfeld seine Dichtestrukturen formen sollte“, erläutert Soler.

Tatsächlich fand er in allen Fällen eine parallele Ausrichtung der Magnetfelder zur diffusen, also weniger dichten Komponente des ISM [2]. Allerdings zeigte sich bei höheren Dichten des ISM eine allmähliche Verschiebung der Ausrichtung hin zu größeren Winkeln. In den dichtesten Zonen verlief das Magnetfeld sogar senkrecht zu den Strukturen des ISM. Dieser Befund wird in Abbildung 1 wiedergegeben.

Das Magnetfeld leitet das ISM

Diese Ergebnisse bestätigen ein Szenario, das in Abbildung 2 dargestellt ist. Das teilweise ionisierte, diffuse ISM ist über den Elektromagnetismus an das Magnetfeld gekoppelt und kann sich nur entlang der Feldlinien bewegen (a) [3]. Die elektrisch neutralen Anteile wie der Staub werden über Stöße mitgeführt. Deswegen erscheinen die weniger dichten Zonen entlang des Magnetfelds ausgerichtet. Die Turbulenz in den Wolken hilft dabei, dass sie sich entlang den Feldlinien zu Filamenten ausdehnen.

Durch äußere Einflüsse – wie sich ausdehnende Blasen infolge von Supernovaexplosionen oder die Bewegung innerhalb eines Spiralarms der Milchstraße – angestoßen, bewegen sich verschiedene Wolken wie auf Förderbändern auf einander zu. Wenn sie aufeinandertreffen, bilden Sie eine sich ständig verdichtende Ansammlung von ISM, die nun eine Vorzugsrichtung eher senkrecht zu den Magnetfeldlinien aufweist (b).

Das Förderband führt zusätzliches ISM heran und erhöht die Dichte, bis sie so hoch wird, dass die Wolke (oder Teile davon) unter ihrer Eigengravitation kollabiert (c). In dieser Phase ist das Magnetfeld nicht stark genug, um den Kollaps zu verhindern. Das Feld behält während des Kollapses seine Orientierung gegenüber dem Dichteverlauf bei und wird entsprechend verzerrt.

ESA-Weltraumteleskope geben den Ausschlag

Soler untersucht den Zusammenhang zwischen Magnetfeldern und der Struktur von Sternentstehungsgebieten bereits seit einigen Jahren. Diesmal nutzte er für seine Analyse Daten der Planck-Himmelsdurchmusterung und dem „Herschel Gould Belt Survey“ (HGBS). Die Weltraumteleskope Planck und Herschel nahmen beide Mitte 2009 ihre Arbeit auf. Sie maßen die Strahlung des kalten ISM bei verschiedenen Wellenlängen.

Die Herschel-Daten sind besonders dafür geeignet, aus der Strahlung der Materie ihre Dichteverteilung mit hoher räumlicher Auflösung zu bestimmen. Aus den Planck-Daten ermittelte Juan Soler die Polarisation der Strahlung, die Rückschlüsse auf das Magnetfeld gibt. Die länglichen Staubteilchen des ISM richten sich nach dem Magnetfeld aus und fungieren daher ähnlich wie Antennen. Die Schwingung der von ihnen ausgesandten Strahlung hat somit eine Vorzugsrichtung, d.h. sie ist polarisiert. Dass das ISM teils polarisierte Strahlung aussendet, wissen Astronom*innen schon seit einigen Jahrzehnten. Allerdings war es bislang nicht möglich, die großräumige Ausrichtung zu den Strukturen im ISM zu quantifizieren.

Bilderkennungstechniken helfen bei der Untersuchung des ISM

Hierzu adaptiert Soler eine Technik, die in abgewandelter Form bei der Bilderkennung – etwa bei Internet-Bildersuchen oder dem Erstellen von Panoramaaufnahmen – verwendet wird. Diese basiert auf der mathematischen Berechnung von Gradienten, also der Stärke und der Richtung von Veränderungen z. B. der Helligkeiten in den Bildern. Abbildung 3 zeigt, wie Muster in zwei Bildern durch jeweils gleiche Helligkeitsgradienten erkannt werden. Die in den Planck- und Herschel-Daten verwendeten Gradienten betreffen das Magnetfeld und die Dichteverteilung des ISM. So konnte Soler mit statistischen Methoden ableiten, unter welchen Bedingungen beide Komponenten eher parallel oder senkrecht zueinander orientiert sind.

„Die Polarisationsbeobachtungen des Planck-Satelliten haben beispiellose Details über die interstellaren Magnetfelder ergeben. Sie sind der Grundstein für unser zukünftiges Verständnis des magnetisierten ISM, das mit den kommenden Satelliten- und Ballonmissionen weiter verbessert werden wird“, bilanziert Soler.

Endnoten

[1] Interstellare Magnetfelder wurden bei den Beobachtungen des polarisierten Lichts von Sternen vor 60 Jahren entdeckt.

[2] Magnetfelder im diffusen interstellaren Medium sind 100 Millionen Mal schwächer als die Stärke eines Kühlschrankmagneten, durchdringen aber den Raum zwischen den Sternen in Galaxien.

[3] Geladene Teilchen, die sich in einem Magnetfeld bewegen, erfahren eine Kraft, die sie seitwärts bewegt. Sie ist proportional zur Stärke des Magnetfeldes, der Komponente der Geschwindigkeit, die senkrecht zum Magnetfeld steht, und der Ladung des Teilchens. Diese Kraft wird als Lorentz-Kraft bezeichnet.

Hintergrundinformationen

Die Daten wurden mit dem Planck-Satelliten sowie dem Herschel-Weltraumteleskop aufgenommen. Beide Missionen wurden maßgeblich durch die Europäische Weltraumagentur (ESA) entwickelt und betrieben, wobei die NASA ebenfalls wichtige Beiträge geliefert hat. Planck wurde hauptsächlich für die Erforschung der kosmischen Hintergrundstrahlung gebaut und deckte einen Wellenlängenbereich zwischen 300 µm und 11,1 mm ab. Herschel war ein vielseitiges Observatorium, dass das elektromagnetische Spektrum zwischen 55 µm und 672 µm abdeckte.

Die Entwicklung von Planck wurde unterstützt durch: ESA; CNES und CNRS/INSU-IN2P3-INP (Frankreich); ASI, CNR, und INAF (Italien); NASA und DoE (USA); STFC und UKSA (GB); CSIC, MICINN, JA, and RES (Spanien); Tekes, AoF, und CSC (Finnland); DLR und MPG (Deutschland); CSA (Kanada); DTU Space (Dänemark); SER/SSO (Schweiz); RCN (Norwegen); SFI (Irland); FCT/MCTES (Portugal); und PRACE (EU).

Diese Studie basiert auf Daten aus dem Projekt „Herschel Gould Belt Survey“ (HGBS) (http://gouldbelt-herschel.cea.fr) unter der Leitung von Dr. Philippe André am CEA/Saclay (Frankreich). Das HGBS ist ein Programm, das gemeinsam von der SPIRE Specialist Astronomy Group 3 (SAG 3), Wissenschaftler*innen mehrerer Institute des PACS-Konsortiums (CEA Saclay, INAF-IFSI Rom und INAF-Arcetri, KU Leuven, MPIA Heidelberg) und Wissenschaftler*innen des Herschel Science Center (HSC) durchgeführt wird.

Die Daten der Planck- und Herschel-Missionen sind über öffentlich zugängliche Datenarchive für alle Astronom*innen frei erhältlich.

Medienkontakt

Dr. Markus Nielbock
Max-Planck-Institut für Astronomie
Königstuhl 17
69117 Heidelberg
Tel. +49 (0)6221 5328-134
E-Mail: pr@mpia.de

Wissenschaftliche Ansprechpartner:

Dr. Juan Diego Soler
Max-Planck-Institut für Astronomie
Königstuhl 17
69117 Heidelberg
Tel. +49 (0)6221 5328-239
E-Mail: soler@mpia.de

Originalpublikation:

"Using Herschel and Planck observations to delineate the role of magnetic fields in molecular cloud structure "
https://doi.org/10.1051/0004-6361/201935779

Weitere Informationen:

http://www.mpia.de/aktuelles/2019-05-GalaktischeFoerderbaender - Originalpressemitteilung des MPIA mit weiteren Bildern

Dr. Markus Nielbock | Max-Planck-Institut für Astronomie

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Meilensteine auf dem Weg zur Atomkern-Uhr
12.09.2019 | Technische Universität Wien

nachricht Innovative Methoden für nicht-glatte Probleme
11.09.2019 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Milestones on the Way to the Nuclear Clock

Two research teams have succeeded simultaneously in measuring the long-sought Thorium nuclear transition, which enables extremely precise nuclear clocks. TU Wien (Vienna) is part of both teams.

If you want to build the most accurate clock in the world, you need something that "ticks" very fast and extremely precise. In an atomic clock, electrons are...

Im Focus: Künstliche Intelligenz bringt Licht ins Dunkel

Die Vorhersage von durch Licht ausgelösten molekularen Reaktionen ist bis dato extrem rechenaufwendig. Ein Team um Philipp Marquetand von der Fakultät für Chemie der Universitäten Wien hat nun unter Nutzung von künstlichen neuronalen Netzen ein Verfahren vorgestellt, welches die Simulation von photoinduzierten Prozessen drastisch beschleunigt. Das Verfahren bietet neue Möglichkeiten, biologische Prozesse wie erste Schritte der Krebsentstehung oder Alterungsprozesse von Materie besser zu verstehen. Die Studie erschien in der aktuellen Ausgabe der Fachzeitschrift "Chemical Science" und eine zugehörige Illustration auf einem der Cover.

Maschinelles Lernen spielt in der chemischen Forschung eine immer größere Rolle, z.B. bei der Entdeckung und Entwicklung neuer Moleküle und Materialien. In...

Im Focus: Graphene sets the stage for the next generation of THz astronomy detectors

Researchers from Chalmers University of Technology have demonstrated a detector made from graphene that could revolutionize the sensors used in next-generation space telescopes. The findings were recently published in the scientific journal Nature Astronomy.

Beyond superconductors, there are few materials that can fulfill the requirements needed for making ultra-sensitive and fast terahertz (THz) detectors for...

Im Focus: Nadel im Heuhaufen gefunden - bahnbrechende Entdeckung zu Immunzellen die geschädigtes Gewebe nach Herzinfarkt heilen

Würzburger Gustavo Ramos entdeckt mit seiner Juniorforschungsgruppe am Deutschen Zentrum für Herzinsuffizienz das Protein, das für die Bildung der heilungsfördernden T-Zellen nach einem Herzinfarkt verantwortlich ist. Darüber hinaus hat er hat den Ort lokalisiert, an dem die T-Zellen gebildet werden, in den mediastinalen Lymphknoten. Von dort aus wandern sie ins Herz, wo sie die frühe Heilung des geschädigten Herzmuskelgewebes unterstützen. Eine Verbindung zwischen der Größe des Infarkts, der Größe der Lymphknoten, der Menge der T-Zellen und der Regeneration des Herzens konnte ebenfalls gezeigt werden: Je schwerer der Infarkt, desto größer die Lymphknoten und desto besser die Heilung.

Lange hat er danach gesucht, jetzt hat er es gefunden: Den Teil des Proteins, der für die Bildung der T-Zellen verantwortlich ist, die als Helferzellen des...

Im Focus: Weltrekord für Perowskit-CIGS-Tandem-Solarzelle

Ein Team um Prof. Steve Albrecht aus dem HZB stellt auf der weltgrößten internationalen Fachkonferenz EU PVSEC in Marseille am 11. September 2019 einen neuen Weltrekord für eine Tandem-Solarzelle vor. Die Solarzelle kombiniert die Halbleitermaterialien Perowskit und CIGS und erreicht damit einen zertifizierten Wirkungsgrad von 23,26 Prozent. Ein Grund für diesen Erfolg liegt in einer Zwischenschicht aus organischen Molekülen, die sich selbstorganisiert so anordnen, dass auch raue Halbleiter-Oberflächen lückenlos bedeckt werden. Dafür wurden zwei Patente eingereicht.

Perowskit-basierte Solarzellen haben in den letzten zehn Jahren unglaublich rasche Steigerungen des Wirkungsgrades gezeigt. Die Kombination von Perowskiten mit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Wie verändert Autonomes Fahren unseren Alltag?

12.09.2019 | Veranstaltungen

Künstliche Intelligenz – Wie können wir Algorithmen vertrauen?

11.09.2019 | Veranstaltungen

Neutrino-Waage KATRIN mit ersten Ergebnissen

09.09.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Deburring EXPO: Blechkanten und Funktionsoberflächen mit dem Laser veredeln

12.09.2019 | Maschinenbau

Schwarzer Hautkrebs: Neue potentielle Biomarker für aggressiveres Tumorverhalten entdeckt

12.09.2019 | Biowissenschaften Chemie

Weggehen oder dableiben?

12.09.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics