Fraunhofer entwickelt neue Lasergeneration

Kohärent kombinierter UKP-Faserlaser der kW-Klasse, wie er am Fraunhofer IOF in der User Facility bereitgestellt wird. © Fraunhofer IOF, Jena.

Die Kick-off Veranstaltung am 2. Mai 2018 in Aachen markiert den Beginn eines außergewöhnlichen Vorhabens. Prof. Reinhart Poprawe, Leiter des Fraunhofer-Instituts für Lasertechnik ILT gab gemeinsam mit Prof. Andreas Tünnermann, Leiter des Fraunhofer-Instituts für Angewandte Optik und Feinmechanik IOF, den Start des Fraunhofer Clusters of Excellence »ADVANCED PHOTON SOURCES« bekannt.

»Wir treten mit zwölf Instituten an, um eine neue Lasergeneration für Industrie und Forschung zu entwickeln. Geplant ist eine disruptive Technik, auf deren Basis die Anwendungsbereiche für Lasertechnik deutlich erweitert werden – von der Skalierung ultrapräziser Fertigungsverfahren bis zur Erschließung neuer Pulsdauer- und Wellenlängenbereiche für die Forschung«, so der Leiter des Clusters, Prof. Poprawe.

Was können UKP-Laser?

UKP-Laser erzeugen im Fokus selbst bei vergleichsweise kleinen Pulsenergien extrem hohe Intensitäten. Lange Zeit wurden sie lediglich in der Grundlagenforschung eingesetzt. Die Entwicklung hocheffizienter, leistungsstarker Pumpdioden ermöglichte die Nutzung neuer Lasermedien, insbesondere Ytterbium-dotierter Fasern und Kristalle. Darauf basierende UKP-Laser haben in den letzten Jahren mittlere Laserleistungen und eine Robustheit erreicht, die auch industrielle Anwendungen möglich machen.

Für Anwendungen in der Mikromaterialbearbeitung haben UKP-Laser zwei wesentliche Vorteile: Einerseits können sie praktisch alle Materialien bearbeiten. Anderseits ist der Abtrag besonders präzise und dadurch schonend, da durch die ultraschnelle Wechselwirkung kaum Wärme im angrenzenden Material verbleibt. Deshalb waren diese Laser schon früh für die Medizintechnik interessant, beispielsweise für Augenoperationen durch das Femto-LASIK Verfahren.

»ADVANCED PHOTON SOURCES« User Facility mit zwei Applikationslaboren startet 2018

Im Hinblick auf wirtschaftliche Bearbeitungsgeschwindigkeiten beim Schneiden von ultraharten Keramikmaterialien und faserverstärkten Kunststoffen reicht die Leistung aktueller UKP-Laser der 100 W-Klasse oft nicht aus. Getrieben durch die Anwendungspotenziale in der Industrie und den Bedarf der Grundlagenforschung, haben es sich die »ADVANCED PHOTON SOURCES«-Partner zum Ziel gesetzt, die mittlere Leistung der UKP-Quellen an den Fraunhofer-Instituten ILT und IOF bis in den 10 kW-Bereich zu erhöhen. Mit einem Budget von 10 Millionen Euro für die ersten drei Jahre sollen Strahlquellen für Applikationen entwickelt und erprobt werden.

An den beiden Instituten werden noch 2018 Applikationslabore eingerichtet, damit die weiteren Partner frühzeitig mit der Entwicklung der Systemtechnik und innovativen Anwendungen beginnen können. Der Anfang des Jahres gegründete Fraunhofer Cluster steht allen Fraunhofer-Instituten offen, derzeit sind zwölf Institute an diesem Vorhaben beteiligt. Die Applikationsentwicklung zusammen mit den Fraunhofer-Instituten FEP, IAF, IIS, IKTS, IMWS, ISE, ISIT, ITWM, IWM und IWS zielt darauf ab, neue Prozesse zu untersuchen und bekannte Verfahren zu industriell relevanten Durchsätzen zu bringen. Beispiele reichen von der Mikrostrukturierung und Oberflächenfunktionalisierung von Solarzellen, ultraharten Keramiken und Batteriekomponenten bis hin zum Schneiden von Gläsern und Leichtbau-Materialien.

Neben Durchbrüchen in der ultrapräzisen Fertigung mit hoher Produktivität ist mit den Strahlquellen auch die Erzeugung kohärenter Strahlung bis in den weichen Röntgenbereich geplant – mit Photonenflüssen, die um zwei bis drei Größenordnungen über den bisher erreichten liegen. Damit sollen im Bereich der Materialwissenschaften Anwendungen wie die Generierung und Untersuchung neuartiger Materialien etabliert werden. Darüber hinaus ergeben sich neue Möglichkeiten für die Bildgebung biologischer Proben oder im Halbleiter-Bereich sowie für die Lithographie.

Auch für die Grundlagenforschung sind die neuen Laser interessant: Laser-Teilchenbeschleuniger als ein Beispiel sind leistungsstärker, wesentlich kleiner und können dadurch sogar in bestehende Labore integriert werden. Zudem können diese sogenannten »secondary sources« auch Gebiete wie die Materialforschung und Medizintechnik maßgeblich beflügeln.

Die Synergien zwischen den Fraunhofer-Instituten machen es möglich, sowohl die Strahlquellen als auch die Prozesstechnik und viele Anwendungen auf internationalem Spitzenniveau zu entwickeln, um sie Partnern in Industrie und Forschung zur Verfügung zu stellen. Die Verfügbarkeit derartiger Hochleistungs-Ultrakurzpulslaser bietet die Chance, den Innovationsprozess im Technologieumfeld der Hochleistungslaser zu revolutionieren.

Kontakt

Dipl.-Ing. Hans-Dieter Hoffmann
Leiter des Kompetenzfeldes Laser und Optik
Telefon +49 241 8906-206
hansdieter.hoffmann@ilt.fraunhofer.de
Fraunhofer-Institut für Lasertechnik ILT
Steinbachstraße 15
52074 Aachen

Prof. Jens Limpert
Abteilungsleiter Fiber & Waveguide Lasers
Telefon +49 3641 947-811
jens.limpert@iof.fraunhofer.de
Fraunhofer-Institut für Angewandte Optik und Feinmechanik IOF
Albert-Einstein-Str. 7
07745 Jena

http://www.ilt.fraunhofer.de
http://www.iof.fraunhofer.de

Media Contact

Petra Nolis M.A. Fraunhofer-Institut für Lasertechnik ILT

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer