Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Frankfurter Physiker präzisieren Größe von Neutronensternen

26.06.2018

Der Vergleich von milliarden theoretischen Modellen mit Gravitationswellen-Messungen führt zur Lösung eines alten Rätsels.

Wie groß ist ein Neutronenstern? Die bisherigen Schätzungen lagen zwischen acht und 16 Kilometern Durchmesser. Astrophysikern der Goethe Universität und des FIAS ist es jetzt gelungen, die Größe von Neutronensternen bis auf 1,5 Kilometer genau zu bestimmen, indem sie einen aufwändigen statistischen Ansatz wählten und Daten aus der Messung von Gravitationswellen zuhilfe nahmen. Das berichten die Forscher in der aktuellen Ausgabe von Physical Review Letters.


Größenintervall eines typischen Neutronensterns im Vergleich zur Stadt Frankfurt

Lukas Weih/ Goethe-Universität; Satellitenaufnahme: GeoBasis-DE/BKG (2009) Google

Neutronensterne sind die dichtesten Objekte in unserem Universum. Ihre Masse ist weitaus größer ist als die unserer Sonne, zusammengeballt in einer vergleichsweise kleinen Kugel, deren Durchmesser mit dem der Stadt Frankfurt vergleichbar ist.

Allerdings ist das nur eine grobe Abschätzung. Seit mehr als 40 Jahren gilt die Bestimmung des Radius' von Neutronensternen als eine der grundsätzlichsten Fragen der Astro- und Kernphysik, da aus dieser Größe wichtige Informationen über die fundamentalen Wechselwirkungen von dichter Kernmaterie abgeleitet werden können.

Einen wichtigen Beitrag zur Lösung des Rätsels bieten die Daten aus der Detektion von Gravitationswellen (GW170817), die bei der Verschmelzung von zwei Neutronensternen entstanden sind. Ende letzten Jahres nutzten Prof. Luciano Rezzolla, Institut für Theoretische Physik der Goethe-Universität und FIAS, und seine Studenten Elias Most und Lukas Weih diese Daten bereits, um die maximalen Masse von Neutronensternen zu berechnen, bevor sie zu einem schwarzen Loch kollabieren.

Das Ergebnis wurde fast zeitgleich von anderen Forschungsgruppen bestätigt. Nun hat dieselbe Gruppe zusammen mit Prof. Jürgen Schaffner-Bielich von Institut für Theoretische Physik der Goethe-Universität auch strenge Grenzen für die Größe von Neutronensternen ermittelt.

Die Crux des Problems ist, dass die Zustandsgleichung, welche die Materie in Neutronensternen beschreibt, nicht bekannt ist. Die Physiker entschlossen sich deshalb, einen anderen Weg zu gehen: Sie wählten statistische Methoden, um die Größe von Neutronensternen innerhalb enger Grenzen zu bestimmen. Hierzu berechneten sie mehr als zwei Milliarden theoretische Modelle von Neutronensternen, indem sie Einsteins Gleichungen numerisch lösten und diesen riesigen Datensatz mit den Daten der Gravitationswellendetektion GW170817 kombinierten.

„Ein solcher Ansatz ist nicht unüblich in der theoretischen Physik", sagt Rezzolla und fügt hinzu: "Wir können Unsicherheiten einschränken, indem wir die Ergebnisse für alle möglichen Werte der entsprechenden Parameter analysieren." So ist es den Wissenschaftlern gelungen, den Radius eines typischen Neutronensterns auf 1.5 Kilometer genau anzugeben: Er liegt zwischen 12-13.5 Kilometern- ein Ergebnis, das mit künftigen Detektionen von Gravitationswellen weiter verbessert werden kann.

„Das Ganze birgt allerdings noch eine Tücke, und zwar die Möglichkeit von Zwillingssternen", kommentiert Prof. Schaffner-Bielich. Es ist nämlich möglich, dass bei extrem hohen Dichten ein Phasenübergang stattfindet. Die Materie hat dann plötzlich ganz andere Eigenschaften, so wie Wasser hart wird, wenn es zu Eis gefriert.

Im Fall von Neutronensternen wird spekuliert, dass beim Phasenübergang gewöhnliche Materie in "Quarkmaterie" umgewandelt wird. Bezieht man diese Möglichkeit ein, ist noch eine weitere Gleichgewichtslösung der Einsteingleichungen möglich: Ein exotischer Zwilling mit exakt dergleichen Masse und einem deutlich kleinerem Radius.

Obwohl es für die Existenz dieser zweiten Klasse von Neutronensternen keine Beweise gibt, sind sie zumindest theoretisch möglich. Das Team um Rezzolla und Schaffner-Bielich hat sie deshalb trotz der zusätzlichen Komplikationen, die mit der Berechnung von Zwillingssternen einhergehen, berücksichtigt.

Diese Mühe wurde mit einem unerwarteten Ergebnis belohnt: Zwillingssterne sind statistisch gesehen sehr selten und können während der Verschmelzung zweier Neutronensterne nur wenig verformt werden. Dieses Ergebnis ist deshalb wichtig, weil es Wissenschaftlern durch künftige Beobachtungen erlaubt, die Existenz dieser Zwillinge potentiell auszuschließen. So wird sich mit zuküngtigen Gravitationswellenbeobachtungen zeigen, ob Neutronensterne tatsächlich exotische Zwillinge haben.

Publikation: Elias R. Most, Lukas R. Weih, Luciano Rezzolla, Jürgen Schaffner-Bielich: New constraints on radii and tidal deformabilities of neutron stars from GW170817, Phys. Rev. Lett. 120, 261103. https://doi.org/10.1103/PhysRevLett.120.261103

Informationen: Prof. Dr. Luciano Rezzolla, Institut für Theoretische Physik, Fachbereich Physik und Frankfurt Institute for Advanced Studies, Campus Riedberg, Tel. (069) 798-47871, rezzolla@fias.uni-frankfurt.de.

Aktuelle Nachrichten aus Wissenschaft, Lehre und Gesellschaft in GOETHE-UNI online (www.aktuelles.uni-frankfurt.de)

Die Goethe-Universität ist eine forschungsstarke Hochschule in der europäischen Finanzmetropole Frankfurt. 1914 mit privaten Mitteln überwiegend jüdischer Stifter gegründet, hat sie seitdem Pionierleistungen erbracht auf den Feldern der Sozial-, Gesellschafts- und Wirtschaftswissenschaften, Medizin, Quantenphysik, Hirnforschung und Arbeitsrecht. Am 1. Januar 2008 gewann sie mit der Rückkehr zu ihren historischen Wurzeln als Stiftungsuniversität ein hohes Maß an Selbstverantwortung. Heute ist sie eine der zehn drittmittelstärksten und drei größten Universitäten Deutschlands mit drei Exzellenzclustern in Medizin, Lebenswissenschaften sowie Geistes- und Sozialwissenschaften. Zusammen mit der Technischen Universität Darmstadt und der Universität Mainz ist sie Partner der länderübergreifenden strategischen Universitätsallianz Rhein-Main.

Internet: www.uni-frankfurt.de

Herausgeberin: Die Präsidentin der Goethe-Universität Redaktion: Dr. Anne Hardy, Referentin für Wissenschaftskommunikation, Abteilung PR & Kommunikation, Theodor-W.-Adorno-Platz 1, 60323 Frankfurt am Main, Tel: (069) 798-12498, Fax: (069) 798-763 12531, hardy@pvw.uni-frankfurt.de

Dr. Anne Hardy | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht InSight: Touchdown auf dem Mars
19.11.2018 | Max-Planck-Institut für Sonnensystemforschung

nachricht Weltweit erstmals Entstehung von chemischen Bindungen in Echtzeit beobachtet und simuliert
19.11.2018 | Universität Paderborn

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: InSight: Touchdown auf dem Mars

Am 26. November landet die NASA-Sonde InSight auf dem Mars. Erstmals wird sie die Stärke und Häufigkeit von Marsbeben messen.

Monatelanger Flug durchs All, flammender Abstieg durch die Reibungshitze der Atmosphäre und sanftes Aufsetzen auf der Oberfläche – siebenmal ist das Kunststück...

Im Focus: Weltweit erstmals Entstehung von chemischen Bindungen in Echtzeit beobachtet und simuliert

Einem Team von Physikern unter der Leitung von Prof. Dr. Wolf Gero Schmidt, Universität Paderborn, und Prof. Dr. Martin Wolf, Fritz-Haber-Institut Berlin, ist ein entscheidender Durchbruch gelungen: Sie haben weltweit zum ersten Mal und „in Echtzeit“ die Änderung der Elektronenstruktur während einer chemischen Reaktion beobachtet. Mithilfe umfangreicher Computersimulationen haben die Wissenschaftler die Ursachen und Mechanismen der Elektronenumverteilung aufgeklärt und visualisiert. Ihre Ergebnisse wurden nun in der renommierten, interdisziplinären Fachzeitschrift „Science“ veröffentlicht.

„Chemische Reaktionen sind durch die Bildung bzw. den Bruch chemischer Bindungen zwischen Atomen und den damit verbundenen Änderungen atomarer Abstände...

Im Focus: Rasende Elektronen unter Kontrolle

Die Elektronik zukünftig über Lichtwellen kontrollieren statt Spannungssignalen: Das ist das Ziel von Physikern weltweit. Der Vorteil: Elektromagnetische Wellen des Licht schwingen mit Petahertz-Frequenz. Damit könnten zukünftige Computer eine Million Mal schneller sein als die heutige Generation. Wissenschaftler der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) sind diesem Ziel nun einen Schritt nähergekommen: Ihnen ist es gelungen, Elektronen in Graphen mit ultrakurzen Laserpulsen präzise zu steuern.

Eine Stromregelung in der Elektronik, die millionenfach schneller ist als heutzutage: Davon träumen viele. Schließlich ist die Stromregelung eine der...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: Eine kalte Supererde in unserer Nachbarschaft

Der sechs Lichtjahre entfernte Barnards Stern beherbergt einen Exoplaneten

Einer internationalen Gruppe von Astronomen unter Beteiligung des Max-Planck-Instituts für Astronomie in Heidelberg ist es gelungen, beim nur sechs Lichtjahre...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Personalisierte Implantologie – 32. Kongress der DGI

19.11.2018 | Veranstaltungen

Internationale Konferenz diskutiert digitale Innovationen für die öffentliche Verwaltung

19.11.2018 | Veranstaltungen

Naturkonstanten als Hauptdarsteller

19.11.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Gen-Radiergummi: Neuer Behandlungsansatz bei chronischen Erkrankungen

19.11.2018 | Biowissenschaften Chemie

Mit maschinellen Lernverfahren Anomalien frühzeitig erkennen und Schäden vermeiden

19.11.2018 | Informationstechnologie

Neuer Stall ermöglicht innovative Forschung für tiergerechte Haltungssysteme

19.11.2018 | Agrar- Forstwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics