Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Fortschritt in der Nano-Optik

25.11.2013
Einzelne Lichtteilchen so bändigen, dass sich ihre Bewegung auf Computerchips und Nanostrukturen steuern lässt: Das könnte der Informationstechnik wichtige neue Impulse geben. Würzburger Physiker stellen jetzt einen Fortschritt auf diesem Gebiet vor.

In der Computertechnologie gelingt es schon seit Jahren nicht mehr, die Taktrate der klassischen Prozessoren zu erhöhen. Eine stärkere Rechnerleistung lässt sich nur noch durch Tricks erreichen, etwa durch die Verwendung mehrerer Prozessorkerne.


Polarisierte Lichtpulse werden in eine Nano-Antenne eingespeist, an Drähten in jeweils entsprechenden Ladungswellenmustern weitergeleitet und wieder abgestrahlt.

(Grafik: Thorsten Feichtner)

Die Forschung sucht darum nach neuartigen Konzepten. Vielversprechend erscheinen optische Schaltkreise, die mit Lichtteilchen (Photonen) arbeiten – auch weil sie sich vermutlich für die Übertragung von Daten zwischen Quantencomputern eignen. Solche superschnellen Rechner gibt es zwar noch nicht, aber an ihrer Realisierung wird weltweit geforscht.

Optisches Signal im Nanobereich übertragen

Einen grundlegenden Schritt hin zu optischen Schaltkreisen haben die Arbeitsgruppen der Professoren Bert Hecht und Tobias Brixner an der Universität Würzburg gemacht: Die Wissenschaftler schafften es, ein Lichtsignal über eine Antenne in einen Wellenleiter einzuspeisen und es am anderen Ende über eine zweite Antenne wieder abzugeben.

Das Besondere daran: Die Übertragung des optischen Signals gelang den Forschern in winzigen Strukturen, die in die heutige Mikroelektronik integrierbar sind: Antennen und Wellenleiter messen jeweils nur wenige hundert Nanometer. In solch kleinen Dimensionen kann man Photonen normalerweise nicht handhaben: „Sie lassen sich nur äußerst ungern in enge Räume zwingen“, erklärt Hecht. „Darum ist es bislang auch schwierig, photonische Technologien mit Siliziumtechnologien zu kombinieren, wie sie üblicherweise auf Chips verwendet werden.“

Erfolg mit schwingenden Plasmonen

Wie ist den Forschern dann die Bändigung der Photonen geglückt? Sie setzten nicht auf freie, sondern auf gebundene Photonen. Die entstehen unter bestimmten Bedingungen an der Oberfläche von gut leitenden Metallen wie Gold. Dort eintreffendes Licht kann Elektronenschwingungen erzeugen, so genannte Plasmonen, die sich fortbewegen und an einer anderen Stelle wieder Licht abstrahlen. Plasmonen verhalten sich ähnlich wie freie Photonen, lassen sich aber auf sehr kleine Räume konzentrieren.

Den weltweit ersten einfachen Plasmonen-Schaltkreis haben die Würzburger Forscher vor kurzem im renommierten Fachjournal „Physical Review Letters“ präsentiert. Er besteht aus einer rund 200 Nanometer langen Antenne, die mit hoher Effizienz freie Photonen einfängt und in Plasmonen umwandelt. An dieser Lichtantenne hängt ein Plasmonenleiter aus zwei feinen Golddrähten, die etwa drei Mikrometer lang sind und parallel zueinander verlaufen. Darauf können sich die Ladungswellen in genau zwei definierten Mustern ausbreiten – dieses Phänomen kann in Zukunft eingesetzt werden, um die Bewegungsrichtung der Plasmonen zu steuern, was mit Elektronen so nicht möglich ist.

Starke Abschwächung im Schaltkreis

In dem Fachjournal zeigen die Würzburger Forscher zunächst, wie die beiden Ladungswellenmuster angeregt werden und wie man die Anregung im Experiment nachweist. Aber noch werden die Plasmonen auf ihrem Weg durch den Schaltkreis stark abgeschwächt. „Dieses Problem gilt es zu lösen, bevor das Prinzip in die Nähe der technischen Anwendbarkeit gelangen kann“, so Hecht.

Die Physiker sind sich bewusst, dass sie nur einen kleinen Schritt hin zu kompletten optischen Schaltkreisen gemacht haben. „Doch unsere Ergebnisse bilden mit eine Grundlage dafür, dass plasmonische Wellenleiter auch in Zukunft ein hoch spannendes Forschungsgebiet bleiben“, so Hecht.

“Multimode plasmon excitation and in-situ analysis in top-down fabricated nanocircuits”, Peter Geisler, Gary Razinskas, Enno Krauss, Xiao-Fei Wu, Christian Rewitz, Philip Tuchscherer, Sebastian Goetz, Chen-Bin Huang, Tobias Brixner, and Bert Hecht, Phys. Rev. Lett. 111, 183901 (2013), DOI: 10.1103/PhysRevLett.111.183901

Kontakt

Prof. Dr. Bert Hecht, Physikalisches Institut, Universität Würzburg, T (0931) 31-85863, hecht@physik.uni-wuerzburg.de

Prof. Dr. Tobias Brixner, Institut für Physikalische und Theoretische Chemie, Universität Würzburg, T (0931) 31-86330, brixner@phys-chemie.uni-wuerzburg.de

Robert Emmerich | idw
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Berichte zu: Antenne Lichtteilchen Nano-Optik Nanometer Photon Physik Plasmonen Schaltkreis Wellenleiter

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neue Anwendungen für Mikrolaser in der Quanten-Nanophotonik
20.07.2018 | Technische Universität Berlin

nachricht Superscharfe Bilder von der neuen Adaptiven Optik des VLT
18.07.2018 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: Rostocker Forscher entwickeln autonom fahrende Kräne

Industriepartner kommen aus sechs Ländern

Autonom fahrende, intelligente Kräne und Hebezeuge – dieser Ingenieurs-Traum könnte in den nächsten drei Jahren zur Wirklichkeit werden. Forscher aus dem...

Im Focus: Superscharfe Bilder von der neuen Adaptiven Optik des VLT

Das Very Large Telescope (VLT) der ESO hat das erste Licht mit einem neuen Modus Adaptiver Optik erreicht, die als Lasertomografie bezeichnet wird – und hat in diesem Rahmen bemerkenswert scharfe Testbilder vom Planeten Neptun, von Sternhaufen und anderen Objekten aufgenommen. Das bahnbrechende MUSE-Instrument kann ab sofort im sogenannten Narrow-Field-Modus mit dem adaptiven Optikmodul GALACSI diese neue Technik nutzen, um Turbulenzen in verschiedenen Höhen in der Erdatmosphäre zu korrigieren. Damit ist jetzt möglich, Bilder vom Erdboden im sichtbaren Licht aufzunehmen, die schärfer sind als die des NASA/ESA Hubble-Weltraumteleskops. Die Kombination aus exquisiter Bildschärfe und den spektroskopischen Fähigkeiten von MUSE wird es den Astronomen ermöglichen, die Eigenschaften astronomischer Objekte viel detaillierter als bisher zu untersuchen.

Das MUSE-Instrument (kurz für Multi Unit Spectroscopic Explorer) am Very Large Telescope (VLT) der ESO arbeitet mit einer adaptiven Optikeinheit namens GALACSI. Dabei kommt auch die Laser Guide Stars Facility, kurz ...

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Stadtklima verbessern, Energiemix optimieren, sauberes Trinkwasser bereitstellen

19.07.2018 | Veranstaltungen

Innovation – the name of the game

18.07.2018 | Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neue Anwendungen für Mikrolaser in der Quanten-Nanophotonik

20.07.2018 | Physik Astronomie

Need for speed: Warum Malaria-Parasiten schneller sind als die menschlichen Abwehrzellen

20.07.2018 | Biowissenschaften Chemie

Die Gene sind nicht schuld

20.07.2018 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics