Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forschung für die LED-Tapete der Zukunft

15.02.2018

Physiker der Universität Bremen haben einen wichtigen Beitrag zum Verständnis neuartiger atomar dünner Materialien für effiziente biegsame Displays auf gekrümmten Oberflächen geleistet. Die Ergebnisse hat kürzlich die international renommierte Fachzeitschrift „Nature Communications“ veröffentlicht.

Wir leben in einer Welt von Displays, deren Größe und farbliche Brillanz ständig zunehmen. Bei der Weiterentwicklung der Glühbirne ist es einfach: Sie wird immer mehr durch LEDs ersetzt, in denen sogenannte Halbleiter das Licht erzeugen.


Grafische Darstellung eines Stapels aus drei atomar dünnen Kristallen.

Copyright: Universität Bremen


Mitglieder der Arbeitsgruppe von Prof. Frank Jahnke und Dr. Christopher Gies am Institut für Theoretische Physik der Universität Bremen, die an der Entwicklung neuartiger atomar dünner Halbleiter arbeiten.

Copyright: Universität Bremen

Die Einsatzmöglichkeiten von Displays sind jedoch beschränkt, da herkömmliche Halbleitermaterialien eher unflexibel und starr sind. Mit organischen Leuchtdioden (OLEDs) können zwar biegsame Displays hergestellt werden, jedoch sind Lebensdauer und Lichtausbeute niedriger als bei ihren anorganischen Verwandten.

Nun sind neue Materialien im Gespräch, die extrem dünn sind, sehr intensiv leuchten und sich zugleich erstaunlich einfach herstellen lassen: Mit herkömmlichem Klebeband kann man im Labor einzelne atomare Lagen von speziellen Kristallen abziehen.

Besonders geeignet sind hierfür die sogenannten Van-der-Waals-Kristalle. Eine zentrale Idee ist hierbei das Prinzip des „Lego-Baukastens“. Man kombiniert die Funktionalitäten leuchtender und elektrisch leitender atomar dünner Materialien miteinander, indem man sie direkt aufeinanderstapelt.

Innovatives Material ermöglicht Einsatz in Sensoren und Solarzellen

Die auf diese Weise erzeugten Materialien weisen eine enorme mechanische Stabilität auf. Sie leuchten nicht nur sehr gut, sie absorbieren auch Licht und können es in Strom umwandeln. Deshalb gibt es bereits erste Anwendungen in sehr empfindlichen Sensoren, denkbar ist auch ihre Verwendung in biegsamen Solarpanels. Diese Eigenschaft ist im Hinblick auf den wachsenden Bedarf an erneuerbaren Energiequellen besonders interessant.

Tanzendes Spiel der Teilchen erforscht

Licht in einem bestimmten Bereich des Farbspektrums wird in Halbleitern durch das Zerstrahlen positiver und negativer elektrischer Ladungen erzeugt. Wegen ihrer unterschiedlichen Polaritäten ziehen sich die entgegengesetzten Ladungen an und können sich zu neuen Verbundteilchen, sogenannten Exzitonen, mit veränderten Eigenschaften zusammenschließen. Das Physikerteam der Universität Bremen hat im Rahmen der Grundlagenforschung zu den neuen Materialien eine Methode entwickelt, mit der diese Verbundteilchen sichtbar gemacht und studiert werden können.

Die Wissenschaftler haben analysiert, wie dieses Auftreten der Verbundteilchen von der Anzahl der Ladungen abhängt, die man bei einer Leuchtdiode von außen steuern kann. „Die ungleichen Ladungen zeigen hierbei ein Verhalten ganz ähnlich dem von Tänzern auf einer unterschiedlich bevölkerten Tanzfläche.

Ist die Dichte gering, befinden sich also sehr wenige Tänzer auf der Fläche, so finden sich keine Partner und jeder tanzt für sich allein. Auf einer gut gefüllten Tanzfläche hingegen finden sich Paare zusammen und tanzen ungestört jedes für sich. Eine übervolle Tanzfläche schließlich führt zu ständigen Kollisionen der Paare, so dass diese sich trennen und jeder wieder allein tanzt.“, erläutert Nachwuchswissenschaftler Dr. Alexander Steinhoff die Forschungsergebnisse.

„Wir konnten zeigen, dass die Verbundteilchen mittels der sogenannten Photoelektronenspektroskopie sichtbar gemacht werden können“, erklärt er. „Hierbei wird ein hochenergetisches Lichtteilchen eingestrahlt. Das zusammengesetzte Teilchen wird zerschlagen und seine Bestandteile aus dem Halbleiter herausgelöst und detektiert, um auf die Struktur des Verbundteilchens zu schließen.“

Neue Methode bringt Struktur in den Tanz

Die Autoren regen in dem Nature-Artikel an, diese Erkenntnisse zu nutzen. Das Verhältnis zwischen freien und gepaarten Ladungen beeinflusst direkt die optischen und elektronischen Eigenschaften des Materials. Es kann durch gezielte Strukturierung der Umgebung gesteuert werden, auf die atomar dünne Materialien sehr sensitiv reagieren.

Die Wissenschaftler leisten hiermit einen wichtigen Beitrag für die Handhabung des „Lego-Baukastens“ und die Herstellung von ultradünnen optoelektronischen Bauteilen mit maßgeschneiderten Eigenschaften.

Die Arbeit wurde durch die Deutsche Forschungsgemeinschaft (DFG) im Rahmen der Graduiertenschule „Quantum Mechanical Materials Modelling“ an der Universität Bremen gefördert. Der Artikel „Exciton fission in monolayer transition metal dichalcogenide semiconductors“ ist unter diesem Link nachzulesen: www.nature.com/articles/s41467-017-01298-6 (DOI Nummer: 10.1038/s41467-017-01298-6).

Achtung Redaktionen: Unter diesem Link finden Sie Bildmaterial: https://seafile.zfn.uni-bremen.de/d/2bd6be7b3b1a4f52a4b7/

Fragen beantwortet:

Prof. Dr. Frank Jahnke
Universität Bremen
Institut für Theoretische Physik
Tel. +49 421 218-62050
E-Mail: jahnke@itp.uni-bremen.de

Stefanie Möller | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-bremen.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht VLT macht den präzisesten Test von Einsteins Allgemeiner Relativitätstheorie außerhalb der Milchstraße
22.06.2018 | ESO Science Outreach Network - Haus der Astronomie

nachricht Neue Phänomene im magnetischen Nanokosmos
22.06.2018 | Max-Planck-Institut für Intelligente Systeme

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics