Forscher der Universität Bonn schließen aus ihren Berechnungen auf exotische „Dunkle Sternhaufen“

Sterne entwickeln sich aus Gaswolken, die sich aufgrund der Schwerkraft sehr stark zusammenziehen und dann das Sonnenfeuer zünden. Nur selten sind die stellaren Objekte Einzelgänger, meist treten sie in Gruppen auf. Diese Sternhaufen sind Orte im Universum, wo sich besonders viele der leuchtenden Gaskugeln auf einmal bilden und nach vielen Millionen bis Milliarden von Jahren auch wieder zugrunde gehen. Wenn solche Haufen noch jung sind, hauchen sterbende Sterne ihr Leben in einer Supernova-Explosion mit einem extrem hellen Aufleuchten aus. „War die Masse der Sterne groß genug, bleiben extrem dichte Neutronensterne und Schwarze Löcher übrig“, sagt Prof. Dr. Pavel Kroupa vom Argelander Institut für Astronomie der Universität Bonn.

Die extreme Gravitation bannt jeden Lichtstrahl

In der Nähe der Schwarzen Löcher ist die Schwerkraft so groß, dass nicht einmal Licht nach außen gelangen kann. Sie sind daher unsichtbar. Nur wenn eine Gaswolke oder ein Stern von ihrer extremen Gravitation in seiner Bahn beschleunigt wird, können Astronomen die Existenz von Schwarzen Löchern nachweisen. „Unter bestimmten Bedingungen entwickeln sich besonders viele Schwarze Löcher in einem Sternhaufen“, berichtet Dr. Sambaran Banerjee, der als Alexander von Humboldt Stipendiat vom renommierten „Tata Institute of Fundamental Research“ in Mumbai (Indien) zu Prof. Kroupa nach Bonn kam. „Wir schlagen vor, dann von einem Dunklen Sternhaufen zu sprechen, der aus umeinander kreisenden Schwarzen Löchern und einigen Sternen besteht.“

Die ursprüngliche Fragestellung der Bonner Physiker war es, die physikalischen Eigenschaften sterbender Sternhaufen zu erforschen. Die auf Hochleistungscomputern durchgeführten Rechnungen ergaben überraschend, dass sich solche „Dunkle Sternhaufen“ bilden müssen. „Die Sterne führen in den Haufen chaotische Tänze auf“, berichtet Prof. Kroupa. „Sie ziehen sich aufgrund der Schwerkraft gegenseitig an und wechseln deshalb laufend die Bahn.“ Die Gravitation hält den Sternhaufen zusammen, die Tänzer bleiben also zunächst beieinander. Jedoch wandeln sich die Tanzpartner. „Mit der Zeit verdampfen die leichteren Sterne“, sagt Prof. Kroupa. „Die durch Supernovae entstandenen schwereren Schwarzen Löcher und Neutronensterne reichern sich aber immer mehr an – der Sternhaufen wird deutlich dunkler, weil diese Komponenten kein Licht aussenden.“ Daraus entwickeln sich dann „Dunkle Sternhaufen“. Der Vorhang zur kosmischen Tanzveranstaltung schließt sich also allmählich.

Ein „Kick“ mit mehreren 100 Kilometern pro Sekunde

Bei den Supernovae-Explosionen kann es jedoch passieren, dass die daraus resultierenden Schwarzen Löcher stark beschleunigt und aus dem noch jungen Sternhaufen herausgeschleudert werden. „Dieser Kick kann mit mehreren 100 Kilometern pro Sekunde erfolgen“, sagt Dr. Banerjee. Damit gehen die Schwarzen Löcher verloren und es kann sich kein „Dunkler Sternhaufen“ entwickeln. „Je näher der Sternhaufen am Zentrum der Milchstraße liegt, desto größer ist die umgebende Gravitation“, erläutert Prof. Kroupa. Dann können die leichten Sterne während des Alterns des Haufens schneller verdampfen, als sich die Schwarzen Löcher gegenseitig herausschießen können. „Unsere Berechnungen zeigen, dass Dunkle Sternhaufen nur innerhalb eines Abstandes von ungefähr 15.000 Lichtjahren vom Zentrum der Milchstraße vorkommen können“, sagt Dr. Banerjee. Weiter weg verdampfen die leichten Sterne zu langsam, sodass die dunkle Phase nicht erreicht werden kann.

„Bisher gab es keine Möglichkeit nachzuprüfen, ob die Schwarzen Löcher und Neutronensterne überhaupt in den Sternhaufen bleiben“, ergänzt Prof. Kroupa. „Anhand der Dunklen Sternhaufen, die wir aufgrund unserer Berechnungen vorschlagen, ist dies nun aber möglich.“ Einen „Dunklen Sternhaufen“ erkenne man daran, dass sich die noch verbleibenden Sterne in ihm deutlich schneller bewegen, als sie es dürften, berichten die Wissenschaftler. „Die Sterne scheinen von einer unsichtbaren Kraft oder Masse zusammengehalten zu werden“, sagt Dr. Banerjee. Diese Kraft sei die zusätzliche Gravitation der im Sternhaufen vorhandenen Schwarzen Löcher und Neutronensterne.

„Astronomen können nun gezielt nach Dunklen Sternhaufen suchen“, sagt Prof. Kroupa. „Wenn sie tatsächlich gefunden werden, dann ist eine neue exotische Klasse von Himmelskörpern entdeckt.“ Die dann gewonnenen Erkenntnisse würden auch das Verständnis für die Physik der Supernovae-Explosionen vervollkommnen. „Außerdem müssten die Sternhaufen dann die Quelle von Gravitationswellen sein, die Albert Einstein anhand seiner Allgemeinen Relativitätstheorie vorhergesagt hat“, schließt der Physiker der Universität Bonn.

Publikation: Sambaran Banerjee und Pavel Kroupa: A new type of compact stellar population: dark star clusters, 2011, The Astrophysical Journal Letters, doi:10.1088/2041-8205/741/1/L12

Kontakt:

Prof. Dr. Pavel Kroupa
Argelander-Institut für Astronomie
Tel. 0228/736140 und 0177/9566127
E-Mail: pavel@astro.uni-bonn.de
Dr. Sambaran Banerjee
Argelander-Institut für Astronomie
Tel. 0228/73 3461 und 01514 0519254
E-Mail: sambaran@astro.uni-bonn.de

Media Contact

Johannes Seiler idw

Weitere Informationen:

http://www.uni-bonn.de

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue Industrie-4.0-Lösung für niedrigschwelligen Zugang zu Datenräumen

»Energizing a Sustainable Industry« – das Motto der Hannover Messe 2024 zeigt klar, wie wichtig eine gleichermaßen leistungsstarke und nachhaltige Industrie für den Fertigungsstandort Deutschland ist. Auf der Weltleitmesse der…

Quantenpräzision: Eine neue Art von Widerstand

Physikforschende der Universität Würzburg haben eine Methode entwickelt, die die Leistung von Quantenwiderstands-Normalen verbessern kann. Sie basiert auf einem Quantenphänomen namens anomaler Quanten-Hall-Effekt. In der industriellen Produktion oder in der…

Sicherheitslücke in Browser-Schnittstelle erlaubt Rechnerzugriff über Grafikkarte

Forschende der TU Graz waren über die Browser-Schnittstelle WebGPU mit drei verschiedenen Seitenkanal-Angriffen auf Grafikkarten erfolgreich. Die Angriffe gingen schnell genug, um bei normalem Surfverhalten zu gelingen. Moderne Websites stellen…

Partner & Förderer