Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forscher entdecken spektakuläre Vielfalt nanoporöser Kristalle

05.01.2016

Wissenschaftler der Freien Universität Brüssel und der Universität Leipzig haben bisher unbekannte Mechanismen des Molekültransportes in nanoporösen Materialien entdeckt. Sie widerlegten damit eine über Jahrzehnte unwidersprochene Annahme, indem sie zeigten, dass sich jedes einzelne nanoporöse Kristall sehr unterschiedlich verhalten kann. Diese Entdeckung führt zu einer radikalen Wende in der Erforschung des Gebietes. Bisher waren die Forscher von der falschen Annahme annähernder Gleichheit im Verhalten der einzelnen Kristalle ausgegangen. Ihre neuen Erkenntnisse veröffentlichten sie kürzlich in der renommierten Fachzeitschrift "Nature Materials".

Nanoporöse Materialien, wie zum Beispiel Zeolithe oder metall-organische Gerüstverbindungen, enthalten Poren mit Durchmessern von weniger als einem Millionstel eines Millimeters, in denen Moleküle gespeichert oder in andere Moleküle umgewandelt werden können.

Sie sind für unsere Gesellschaft von großer Bedeutung und finden vielfältige Anwendungen, etwa als umweltfreundliche Katalysatoren zur Beschleunigung der chemischen Umwandlung von Molekülen in technisch wertvolle Endprodukte und als molekulare "Schwämme" zur Reinigung von Gasen und Flüssigkeiten, zur Aufnahme von Kohlendioxid oder für medizinische Anwendungen.

Die Entwicklung und weitere Verbesserung solcher Anwendungen hängt entscheidend vom Verständnis der Mechanismen des Molekültransportes in den Nanoporen ab. So wird zum Beispiel die Geschwindigkeit chemischer Umwandlungen in den Nanoporen ganz wesentlich von der Transportgeschwindigkeit bestimmt.

Da nanoporöse Kristalle aus identischen Bausteinen zusammengesetzt sind, haben die Forscher bisher angenommen, dass die Mechanismen und die Geschwindigkeit des Molekültransports für die verschiedenen Kristalle ein und derselben Familie identisch sind.

In ihren Untersuchungen zur Gewinnung von Bio-Alkoholen als Alternative für Erdöl-Folgeprodukte arbeitete das belgische Forscherteam um Prof. Joeri Denayer und Dr. Julien Cousin-Saint-Remi (Freie Universität Brüssel) mit den Physiker-Kollegen der Universität Leipzig um Prof. Dr. Jörg Kärger und Prof. Dr. Jürgen Haase zusammen. Sie wollten grundlegende Einsicht in die Transportmechanismen von Alkohol-Molekülen in nanoporösen Festkörpern gewinnen.

Durch den Einsatz hochentwickelter Techniken der Mikro-Bildgebung, wie sie von den Leipziger Physikern um Kärger und Haase entwickelt wurden, konnte auf diesem Wege nachgewiesen werden, dass sich bei scheinbar identischen Kristallen die Transportgeschwindigkeiten um Größenordnungen unterscheiden können.

Diese Beobachtung lässt nicht nur die gegensätzlichen, einander oft widersprechenden Ergebnisse, von denen in der Vergangenheit berichtet wurde, in einem völlig anderen Licht erscheinen. Sie ist auch für die Entwicklung effizienterer chemischer Prozesse von großer Bedeutung.

"Die klassischen Methoden zur Untersuchung des Molekültransports gestatten es lediglich, das Transportverhalten gemittelt über viele Kristalle zu betrachten. Das kann aber zu völlig falschen Schlussfolgerungen in Hinblick auf die tatsächlich vorherrschenden Transportmechanismen und die ihnen zugrunde liegenden Materialeigenschaften führen", erklärt Kärger.

Die Ergebnisse dieser Zusammenarbeit helfen so anderen Forschern, die Diffusionsmechanismen in nanoporösen Materialien besser zu verstehen. Die detailgetreue Erforschung einzelner Kristalle ist somit ein wichtiger Beitrag zur Entwicklung neuer und besserer Materialien.

Originaltitel der Veröffentlichung in "Nature Materials": "The role of crystal diversity in understanding mass transfer in nanoporous materials" (Die Rolle der Kristall-Diversität zum Verständnis des Massentransports in nanoporösen Materialien) doi:10.1038/nmat4510

Weitere Informationen:

Prof. Dr. Jörg Kärger
Institut für Experimentelle Physik I
Telefon: +49 341 97-32502
E-Mail: kaerger@physik.uni-leipzig.de


Prof. Dr. Jürgen Haase
Institut für Experimentelle Physik II
Telefon: +49 341 97-32601
E-Mail: j.haase@physik.uni-leipzig.de


Dr. Julien Cousin-Saint-Remi
Freie Universität Brüssel
Telefon: +32 2 629 33 18
E-Mail: jcousins@vub.ac.be

Weitere Informationen:

http://www.nature.com/nmat/journal/vaop/ncurrent/full/nmat4510.html

Susann Huster | Universität Leipzig
Weitere Informationen:
http://www.uni-leipzig.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Physiker der Saar-Uni wollen neuartige Mikroelektronik entwickeln
23.10.2019 | Universität des Saarlandes

nachricht Weltweit erste Herstellung des Materials Aluminiumscandiumnitrid per MOCVD
22.10.2019 | Fraunhofer-Institut für Angewandte Festkörperphysik IAF

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hohlraum vermittelt starke Wechselwirkung zwischen Licht und Materie

Forschern ist es gelungen, mithilfe eines mikroskopischen Hohlraumes eine effiziente quantenmechanische Licht-Materie-Schnittstelle zu schaffen. Darin wird ein einzelnes Photon bis zu zehn Mal von einem künstlichen Atom ausgesandt und wieder absorbiert. Das eröffnet neue Perspektiven für die Quantentechnologie, berichten Physiker der Universität Basel und der Ruhr-Universität Bochum in der Zeitschrift «Nature».

Die Quantenphysik beschreibt Photonen als Lichtteilchen. Will man ein einzelnes Photon mit einem einzelnen Atom interagieren lassen, stellt dies aufgrund der...

Im Focus: A cavity leads to a strong interaction between light and matter

Researchers have succeeded in creating an efficient quantum-mechanical light-matter interface using a microscopic cavity. Within this cavity, a single photon is emitted and absorbed up to 10 times by an artificial atom. This opens up new prospects for quantum technology, report physicists at the University of Basel and Ruhr-University Bochum in the journal Nature.

Quantum physics describes photons as light particles. Achieving an interaction between a single photon and a single atom is a huge challenge due to the tiny...

Im Focus: Freiburger Forschenden gelingt die erste Synthese eines kationischen Tetraederclusters in Lösung

Hauptgruppenatome kommen oft in kleinen Clustern vor, die neutral, negativ oder positiv geladen sein können. Das bekannteste neutrale sogenannte Tetraedercluster ist der weiße Phosphor (P4), aber darüber hinaus sind weitere Tetraeder als Substanz isolierbar. Es handelt sich um Moleküle aus vier Atomen, deren räumliche Anordnung einem Tetraeder aus gleichseitigen Dreiecken entspricht. Bisher waren neben mindestens sechs neutralen Versionen wie As4 oder AsP3 eine Vielzahl von negativ geladenen Tetraedern wie In2Sb22– bekannt, jedoch keine kationischen, also positiv geladenen Varianten.

Ein Team um Prof. Dr. Ingo Krossing vom Institut für Anorganische und Analytische Chemie der Universität Freiburg ist es gelungen, diese positiv geladenen...

Im Focus: Die schnellste Ameise der Welt - Wüstenflitzer haben kurze Beine, aber eine perfekte Koordination

Silberameisen gelten als schnellste Ameisen der Welt - obwohl ihre Beine verhältnismäßig kurz sind. Daher haben Forschende der Universität Ulm den besonderen Laufstil dieses "Wüstenflitzers" auf einer Ameisen-Rennstrecke ergründet. Veröffentlicht wurde diese Entdeckung jüngst im „Journal of Experimental Biology“.

Sie geht auf Nahrungssuche, wenn andere Siesta halten: Die saharische Silberameise macht vor allem in der Mittagshitze der Sahara und in den Wüsten der...

Im Focus: Fraunhofer FHR zeigt kontaktlose, zerstörungsfreie Qualitätskontrolle von Kunststoffprodukten auf der K 2019

Auf der K 2019, der Weltleitmesse für die Kunststoff- und Kautschukindustrie vom 16.-23. Oktober in Düsseldorf, demonstriert das Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR das breite Anwendungsspektrum des von ihm entwickelten Millimeterwellen-Scanners SAMMI® im Kunststoffbereich. Im Rahmen des Messeauftritts führen die Wissenschaftler die vielseitigen Möglichkeiten der Millimeterwellentechnologie zur kontaktlosen, zerstörungsfreien Prüfung von Kunststoffprodukten vor.

Millimeterwellen sind in der Lage, nicht leitende, sogenannte dielektrische Materialien zu durchdringen. Damit eigen sie sich in besonderem Maße zum Einsatz in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

13. Aachener Technologie- und Innovationsmanagement-Tagung – »Collaborate to Innovate: Making the Net Work«

22.10.2019 | Veranstaltungen

Serienfertigung von XXL-Produkten: Expertentreffen in Hannover

22.10.2019 | Veranstaltungen

Digitales-Krankenhaus – wo bleibt der Mensch?

21.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Zebrafische reparieren ihr Herz dank spezieller Zellen

23.10.2019 | Biowissenschaften Chemie

Abbau von Magnesiumlegierung auf der Nanoskala beobachtet

23.10.2019 | Materialwissenschaften

Physiker der Saar-Uni wollen neuartige Mikroelektronik entwickeln

23.10.2019 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics