Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forscher des Fraunhofer FHR begleiten Wiedereintritt der chinesischen Raumstation Tiangong-1

21.03.2018

Die chinesische Raumstation Tiangong-1 wird in wenigen Wochen in die Erdatmosphäre eintreten und zu einem großen Teil verglühen. Dabei können auch Trümmerteile den Erdboden erreichen. Tiangong-1 kreist unkontrolliert und mit ca. 29 000 km/h um die Erde. Die Wiedereintrittsprognose kann derzeit nur im Bereich von mehreren Tagen angegeben werden. Die Wissenschaftler des Fraunhofer FHR in Wachtberg bei Bonn beobachten Tiangong-1 bereits seit Wochen mit ihrem TIRA (Tracking and Imaging Radar) System, einem der leistungsfähigsten Radare zur Weltraumbeobachtung weltweit, um das nationale Weltraumlagezentrum und die ESA mit ihrer Expertise bei den Wiedereintrittsprognosen zu unterstützen.

Nach Verlust des Funkkontakts mit Tiangong-1 im Jahr 2016 ist es aufgrund der niedrigen Bahnhöhe unausweichlich, dass die chinesische Raumstation in die Atmosphäre der Erde wieder eintreten wird. Durch ihre Größe von ca. 10.4 Meter x 3.4 Meter und einem Gewicht von 8.5 Tonnen ist davon auszugehen, dass zumindest Teile davon die Erdoberfläche erreichen können.


Das Welraumbeobachtungsradar TIRA des Fraunhofer-Instituts für Hochfrequenzphysik und Radartechnik FHR in Wachtberg bei Bonn.

Fraunhofer FHR


Radarabbildung von Tiangong-1 aufgenommen mit Weltraumradar TIRA bei einer Bahnhöhe von ca. 270 km über der Erde. Der Hauptkörper und die Solarpanels der Raumstation sind deutlich zu erkennen.

Fraunhofer FHR

Nur wenige Sensoren auf der Welt sind in der Lage Weltraumobjekte wie Tiangong-1 präzise zu vermessen und abzubilden, um qualitativ hochwertige Daten für Wiedereintrittsprognosen zu gewinnen. Das Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR setzt dafür das hochempfindliche TIRA System mit seiner 34 m Parabolantenne ein.

TIRA kombiniert ein Ku-Band-Abbildungsradar mit einem L-Band-Zielverfolgungsradar. Im Gegensatz zu optischen Systemen bieten Radarsysteme wie TIRA entscheidende Vorteile: Vollständige Unabhängigkeit vom örtlichen Wetter, Einsatzfähigkeit bei Tag und bei Nacht, sowie eine Auflösung, die unabhängig von der Entfernung des Objekts ist. Mit TIRA können Weltraumobjekte mit hoher geometrischer und radiometrischer Auflösung abgebildet und deren Umlaufbahn hochgenau vermessen werden.

Mit der präzisen Bestimmung der Bahndaten von Tiangong-1 bis zu ihrem Wiedereintritt Ende März/Anfang April 2018, unterstützt das FHR das WRLageZ bei der Ermittlung der zeitlichen und örtlichen Wiedereintrittsprognose. Auch wird regelmäßig überprüft, ob Tiangong-1 noch intakt ist oder bereits Teile abgebrochen sind.

Darüber hinaus wird das Fraunhofer FHR von der europäischen Weltraumagentur ESA/ESOC in Darmstadt beauftragt, das Eigenrotationsverhalten von Tiangong-1 zu bestimmen und zu untersuchen. Diese Drehbewegung hat einen starken Einfluss auf das Flugverhalten der Raumstation und beeinflusst somit auch den Wiedereintrittszeitpunkt.

Aufgrund der niedrigen Bahninklination wird Tiangong-1 zwischen dem 43°N und dem 43°S Breitengrad in die Erdatmosphäre eintreten und birgt folglich für Deutschland keine Gefahr. Eine genauere Ortsangabe kann erst wenige Tage vorher abgeschätzt werden, da das Abbremsen durch die Atmosphäre von mehreren Faktoren abhängt. Dazu gehören unter anderen die Geschwindigkeit der Eigenrotation, wie und zu welchem Zeitpunkt Tiangong-1 in mehrere Teile zerfällt und das Weltraumwetter. Das Fraunhofer FHR mit TIRA unterstützt das WRLageZ und die ESA/ESOC mit Analysen und Daten und trägt zur Verbesserung der Wiedereintrittsprognose bei.

Das Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR betreibt als eines der führenden europäischen Institute umfassende Forschung im Bereich Hochfrequenz- und Radartechnik. Mit dem Großradar TIRA verfügt das Institut über ein System zur Weltraumbeobachtung, dessen Leistungsfähigkeit in Europa einmalig ist. Das TIRA System wird primär als Experimentalträger für die Entwicklung, Untersuchung und Demonstration von Radarverfahren und Algorithmen zur Erfassung und Aufklärung von erdumkreisenden Objekten – von aktiven Satelliten bis »Weltraummüll« – eingesetzt.

Dipl.-Volksw. Jens Fiege
Leiter interne und externe Kommunikation

Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR
Fraunhoferstraße 20 | 53343 Wachtberg
Telefon +49 (0)151 613 653 67 | Fax +49 (0)228 9435-627
mailto:jens.fiege@fhr.fraunhofer.de
http://www.fhr.fraunhofer.de
http://twitter.com/Fraunhofer_FHR | www.facebook.com/Fraunhofer.FHR/

Weitere Informationen:

https://www.fhr.fraunhofer.de/tiangong-bilder Für weitere Bilder und die Pressemitteilung

Jens Fiege | Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht VLT macht den präzisesten Test von Einsteins Allgemeiner Relativitätstheorie außerhalb der Milchstraße
22.06.2018 | ESO Science Outreach Network - Haus der Astronomie

nachricht Neue Phänomene im magnetischen Nanokosmos
22.06.2018 | Max-Planck-Institut für Intelligente Systeme

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics