Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forscher der FAU untersuchen das Wechselspiel von Raumkrümmung und Licht

22.12.2015

Astronomische Weiten im Labor einfangen

Um den Einfluss von Gravitation auf die Ausbreitung von Licht zu untersuchen, sind Wissenschaftler typischerweise auf astronomische Längenskalen und die Beteiligung enormer Massen angewiesen. Dass es auch anders geht, zeigen Physiker der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) und der Friedrich-Schiller-Universität Jena:


Die Abbildung zeigt, wie sich ein Laserstrahl im Experiment entlang der zweidimensionalen Oberfläche einer sanduhrförmigen Glasfigur ausbreitet und sich dabei einmal um die Figurentaille windet. Diese Figur ist ein Beispiel für eine negativ gekrümmte Oberfläche (vergleiche z.B. mit einem Sattel), im Gegensatz zu einer positiv gekrümmten Oberfläche, wie die einer Kugel. (Bild: Vincent Schultheiß)

In der aktuellen Ausgabe der renommierten Fachzeitschrift Nature Photonics beantworten sie Fragen von astronomischer Tragweite in der Enge ihres Labors und lenken dabei den Fokus auf eine unterschätzte Materialeigenschaft – die Krümmung von Oberflächen.*

Gemäß Einsteins Allgemeiner Relativitätstheorie lässt sich Gravitation als Krümmung der vierdimensionalen Raumzeit beschreiben. Himmelskörper und auch Licht bewegen sich in diesem gekrümmten Raum entlang von Geodäten, die die lokal kürzeste Verbindung zwischen zwei Punkten darstellen, aber von außen betrachtet oft alles andere als gerade erscheinen.

Um die Lichtausbreitung in solch gekrümmten Räumen im Labor zu untersuchen, bedienen sich die Wissenschaftler um Prof. Dr. Ulf Peschel, Universität Jena, eines Tricks: Statt alle vier Dimensionen der Raumzeit zu verändern, reduzieren sie das Problem auf zwei Dimensionen und untersuchen die Lichtausbreitung entlang gekrümmter Oberflächen. Krümmung ist jedoch nicht gleich Krümmung.

„Während man zum Beispiel einen Zylinder oder Kegel leicht zu einem flachen Stück Papier auffalten kann, ist es nicht möglich, die Oberfläche einer Kugel flach auf dem Tisch auszubreiten, ohne dabei die Fläche zu zerreißen oder zumindest stark zu verzehren“, sagt Vincent Schultheiß, Doktorand an der FAU und Erstautor der Studie. „Das kennt man im Alltag von Weltkarten, die die Erdoberfläche immer verfälscht darstellen müssen. Die Krümmung der Kugeloberfläche ist eine intrinsische Eigenschaft, die sich nicht verändern lässt und Auswirkungen auf Geometrie und Physik innerhalb dieser zweidimensionalen Fläche hat.“

Im Experiment wurden die Auswirkungen genau dieser intrinsischen Krümmung des Raumes auf die Lichtausbreitung untersucht. Dazu wurde das Licht in einem schmalen Bereich nahe der Oberfläche eines maßgefertigten Körpers gefangen und so gezwungen, dem Verlauf der Oberfläche zu folgen. Dabei verhielt es sich während der Ausbreitung so, wie es der Ablenkung durch gewaltige Massen entspräche.

Durch eine Variation der Krümmung der Oberfläche kann man die Lichtausbreitung sogar steuern. Umgekehrt ist es aber auch möglich, durch eine Analyse der Lichtausbreitung etwas über die Krümmung der Oberfläche selbst zu lernen. Übertragen auf astronomische Beobachtungen heißt das, dass dem uns von weit entfernten Sternen erreichenden Licht wertvolle Informationen über den durchquerten Raum aufgeprägt sind.

In ihrer Arbeit untersuchten die Forscher hierzu die nach den beiden englischen Physikern Robert Hanbury Brown und Richard Twiss benannte Intensitätsinterferometrie, die zur Bestimmung der Größe sonnennaher Sterne verwendet wird. Bei diesem Messverfahren werden zwei Teleskope mit variablem Abstand auf den zu untersuchenden Stern ausgerichtet und die jeweils von beiden Standpunkten aus sichtbaren Helligkeitsschwankungen miteinander verglichen. Die Helligkeitsunterschiede sind eine Folge der Interferenz unabhängig voneinander auf der Sternoberfläche emittierten Lichts – in der Beobachtungsebene sichtbar als ein körniges Helligkeitsmuster – und erlauben es, Aussagen über die Größe des beobachteten Objektes zu machen.

Da die Lichtwege in einem gekrümmten Raum im Vergleich zum flachen Fall viel stärker dazu neigen zu konvergieren bzw. zu divergieren, ändert sich auch die Korngröße des Helligkeitsmusters in Abhängigkeit von der Raumkrümmung. Die Wissenschaftler konnten zeigen, dass die Kenntnis der Raumkrümmung entscheidend für die Interpretation der Ergebnisse ist, aber auch, wie sich derartige interferometrische Experimente dazu eignen, die allgemeine Krümmung des Universums genauer zu vermessen.

Ob die Forschungsergebnisse jedoch tatsächlich zu einem besseren Verständnis unseres Universums beitragen, steht bis jetzt noch in den Sternen. „Ziel unserer Forschung ist es zunächst, Erkenntnisse der Allgemeinen Relativitätstheorie durch die bewusste Modulierung von Oberflächen von Objekten in die Materialwissenschaften zu übertragen“, sagt Peschel. Dabei entstehen Verknüpfungspunkte zwischen diesen beiden auf den ersten Blick völlig verschiedenen Wissenschaftsdisziplinen.

„Vom Fabrikationsstandpunkt her sind flache Designs oft sehr viel leichter zu bewerkstelligen. Aber gekrümmte Oberflächen bergen ein bisher ungenutztes Potenzial zum Beispiel zur Steuerung von Lichtwegen in optischen Systemen. Durch lokale Variationen der Oberflächenkrümmung kann man oft das gleiche bewirken, wie durch eine Veränderung des Volumenmaterials selbst. Die Zahl nötiger Arbeitsschritte und verwendeter Materialien bei der Herstellung integrierter optischer Schaltkreise oder mikrooptischer Komponenten kann so eventuell reduziert werden. “

Entstanden ist die Studie am Exzellenzcluster Engineering of Advanced Materials (EAM) der FAU, in dem Forscher ganz unterschiedlicher Fachbereiche an der Entwicklung neuartiger Materialien arbeiten.

*doi: 10.1038/nphoton.2015.244

Weitere Informationen:
Vincent Schultheiß
Tel.: 09131/8520343
vincent.schultheiss@fau.de

Prof. Dr. Ulf Peschel
Tel.: 03641/947170
ulf.peschel@uni-jena.de

Dr. Susanne Langer | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.fau.de/
https://www.fau.de/2015/12/news/wissenschaft/astronomische-weiten-im-labor-einfangen/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Was die Tiefsee über die Sterne verrät
18.12.2018 | Technische Universität Berlin

nachricht Beim Phasenübergang benutzen die Elektronen den Zebrastreifen
17.12.2018 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie Bakterien ein Antibiotikum ausschalten

Forscher des HZI und HIPS haben entdeckt, dass resistente Bakterien den Wirkstoff Albicidin mithilfe eines massenhaft gebildeten Proteins einfangen und inaktivieren

Gegen die immer häufiger auftauchenden multiresistenten Keime verlieren gängige Antibiotika zunehmend ihre Wirkung. Viele Bakterien haben natürlicherweise...

Im Focus: How bacteria turn off an antibiotic

Researchers from the HZI and the HIPS discovered that resistant bacteria scavenge and inactivate the agent albicidin using a protein, which they produce in large amounts

Many common antibiotics are increasingly losing their effectiveness against multi-resistant pathogens, which are becoming ever more prevalent. Bacteria use...

Im Focus: Wenn sich Atome zu nahe kommen

„Dass ich erkenne, was die Welt im Innersten zusammenhält“ - dieses Faust’sche Streben ist durch die Rasterkraftmikroskopie möglich geworden. Bei dieser Mikroskopiemethode wird eine Oberfläche durch mechanisches Abtasten abgebildet. Der Abtastsensor besteht aus einem Federbalken mit einer atomar scharfen Spitze. Der Federbalken wird in eine Schwingung mit konstanter Amplitude versetzt und Frequenzänderungen der Schwingung erlauben es, kleinste Kräfte im Piko-Newtonbereich zu messen. Ein Newton beträgt zum Beispiel die Gewichtskraft einer Tafel Schokolade, und ein Piko-Newton ist ein Millionstel eines Millionstels eines Newtons.

Da die Kräfte nicht direkt gemessen werden können, sondern durch die sogenannte Kraftspektroskopie über den Umweg einer Frequenzverschiebung bestimmt werden,...

Im Focus: Datenspeicherung mit einzelnen Molekülen

Forschende der Universität Basel berichten von einer neuen Methode, bei der sich der Aggregatzustand weniger Atome oder Moleküle innerhalb eines Netzwerks gezielt steuern lässt. Sie basiert auf der spontanen Selbstorganisation von Molekülen zu ausgedehnten Netzwerken mit Poren von etwa einem Nanometer Grösse. Im Wissenschaftsmagazin «small» berichten die Physikerinnen und Physiker von den Untersuchungen, die für die Entwicklung neuer Speichermedien von besonderer Bedeutung sein können.

Weltweit laufen Bestrebungen, Datenspeicher immer weiter zu verkleinern, um so auf kleinstem Raum eine möglichst hohe Speicherkapazität zu erreichen. Bei fast...

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Tagung 2019 in Essen: LED Produktentwicklung – Leuchten mit aktuellem Wissen

14.12.2018 | Veranstaltungen

Pro und Contra in der urologischen Onkologie

14.12.2018 | Veranstaltungen

Konferenz zu Usability und künstlicher Intelligenz an der Universität Mannheim

13.12.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Ulmer Forscher beobachten Genomaktivierung "live" im Fischembryo

18.12.2018 | Biowissenschaften Chemie

Notsignal im Zellkern – neuartiger Mechanismus der Zellzykluskontrolle

18.12.2018 | Biowissenschaften Chemie

Neue Methode für sichere Brücken

18.12.2018 | Architektur Bauwesen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics