Fontänen-Atomuhren werden noch stabiler

Sie sind die derzeit genauesten Uhren der Welt: Cäsium-Fontänenuhren liefern die Sekunde auf 15 Stellen hinter dem Komma genau. Bis sie diese Genauigkeit erreichen, brauchen allerdings auch Cäsium-Fontänenuhren eine gewisse Messzeit.

Diese Zeit ist nun mit einer neuen Methode, die in der Physikalisch-Technischen Bundesanstalt (PTB) entwickelt worden ist und die Ausgangsfrequenz der Cäsium-Fontänen stabiler macht, deutlich verkürzt worden.

Die PTB-Physiker nutzen eine neuartige Mikrowellenquelle, um die Cäsiumatome in einen angeregten Zustand zu versetzen: Sie ersetzen den schwingenden Quarz durch einen Mikrowellenoszillator, der mit Hilfe eines Lasers derart stabilisiert wird, dass sein Rauschen für den Fontänenbetrieb vernachlässigbar klein wird.

Dabei fanden Techniken Verwendung, die ursprünglich für optische Atomuhren entwickelt wurden, die häufig als die Atomuhren der Zukunft angesehen werden. Nun können sich die bisherigen Konkurrenten unterstützen, und die Technik der optischen Uhr führt zu einer wesentlichen Verbesserung der etablierten Cäsiumuhren. Die Ergebnisse sind aktuell in dem Fachblatt Phys. Rev. A veröffentlicht.

Cäsium-Fontänen sind deshalb genauer als „normale“ Cäsium-Atomuhren, weil in ihnen die Cäsiumatome mit Hilfe von Laserstrahlen derart trickreich beschossen werden, dass sie abkühlen und immer langsamer werden – von einer rasenden Geschwindigkeit bei Raumtemperatur hin zu langsamem „Kriechtempo“, wenigen Zentimetern pro Sekunde, bei einer Temperatur nahe am absoluten Nullpunkt.

Dadurch bleiben die Atome länger zusammen, so dass die Physiker wesentlich mehr Zeit haben, die entscheidende Eigenschaft der Cäsiumatome zu messen, die für die „Zeiterzeugung“ nötig ist: ihre Resonanzfrequenz. Wenn maximal viele der Atome in einen angeregten Zustand gewechselt sind, dann wird die Frequenz des anregenden Signals gemessen – jene rund neun Milliarden Mikrowellenschwingungen, die ablaufen müssen, bis genau eine Sekunde vergangen ist.

Auf diese Weise ist die Sekunde im Internationalen Einheitensystem SI definiert. Die Realisierung der Sekunde gelingt umso genauer, je feiner die Frequenz des Mikrowellensignals auf die Resonanzfrequenz der Atome abgestimmt wird und je weniger das Mikrowellensignal um den optimalen Wert schwankt. Dieses Rauschen wird mit Hilfe der neuen Technik deutlich reduziert.

Als schwingendes Element bei der Mikrowellenerzeugung dient jetzt nicht mehr ein Schwingquarz, sondern ein Mikrowellenoszillator, der sich mit Hilfe von extrem stabilen Lasern außerordentlich gut stabilisieren lässt. Dabei bedient man sich eines so genannten optischen Frequenzkamms, einer Technik, die für den Aufbau von optischen Atomuhren entwickelt worden ist. Bei diesen Atomuhren werden keine Mikrowellenübergänge verwendet, sondern optische Übergänge, deren Frequenzen um fünf Größenordnungen über den Mikrowellenfrequenzen liegen. Diese Übergänge benötigen zu ihrer gezielten Anregung extrem rauscharmes Laserlicht, das mit Hilfe von Lasern erzeugt wird, die auf spezielle Resonatoren mit hoher Güte stabilisiert werden. Zur Messung kann die Frequenz dieses Laserlichts mit Hilfe des optischen Frequenzkamms in Mikrowellen- oder auch niederfrequente Schwingungen konvertiert werden, aus denen sich letzten Endes Sekundenpulse erzeugen lassen.

Für die Anwendung bei einer Fontäne wird der durch den hochstabilen Laser und den Frequenzkamm vorstabilisierte Mikrowellenoszillator durch das Signal der Cäsiumatome langsam nachgeregelt – so wie vormals der Quarzoszillator. Die bislang erreichten Ergebnisse zeigen eine Verbesserung der relativen Frequenzinstabilität um annähernd 50 %, was zu einer Verkürzung der Messzeiten um einen Faktor 3,2 führt. Statt in drei Tagen kann eine Messung dann zum Beispiel an einem Tag erledigt werden. Die Experimente zeigten zweifelsfrei, dass der durch den Laser stabilisierte Mikrowellenoszillator keinen Rauschbeitrag mehr liefert, so dass das so genannte Quantenprojektionsrauschlimit erreicht wurde. Dieses Rauschen ist durch die Quantennatur der Cäsiumatome vorgeben. Es entsteht dadurch, dass im Uhrenbetrieb die Atome nie mit Sicherheit in den angeregten Zustand wechseln können, sondern dies stets nur mit einer gewissen Wahrscheinlichkeit geschieht, was zu einem Rauschbeitrag, dem Quantenprojektionsrauschen, führt.

Die Ergebnisse machen den Weg frei für weitere Verbesserungen der Instabilität durch Erhöhung der in der Fontänenuhr verwendeten Atomzahlen. Verbesserte Instabilitäten kommen nicht nur den benötigten Messzeiten zugute, sondern ermöglichen auch genauere Untersuchungen systematischer frequenzverschiebender Effekte und sind daher auch für zukünftige Reduzierungen der Gesamtunsicherheit der Uhr unabdingbar. Es kann sich so eine fruchtbare Wechselwirkung ergeben: Während wie hier die Fontänen von der Technologie der optischen Uhren profitieren, kommt letzteren bei ihrer Entwicklung die genauere Fontänenuhr als verbesserte Referenz zugute.

Die Originalveröffentlichung:
Reaching the quantum limit in a fountain clock using a microwave oscillator phase locked to an ultrastable laser, S. Weyers, B. Lipphardt, and H. Schnatz, Phys. Rev. A 79, 031803(R) (2009)

http://link.aps.org/doi/10.1103/PhysRevA.79.031803

Dieses Thema auf den Internetseiten der Abteilung 4 „Aktuelle Forschungsergebnisse aus der Abteilung“:
Eine stabile Mikrowellenquelle für Fontänenuhren auf der Grundlage von Laserlicht

http://www.ptb.de/de/aktuelles/archiv/nachrichten/2009/_fontaene.htm

Ansprechpartner:
Dr. Stefan Weyers, PTB-Arbeitsgruppe 4.41 Zeitnormale, Tel.: (0531) 592-4416,
E-Mail: stefan.weyers@ptb.de

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Ideen für die Zukunft

TU Berlin präsentiert sich vom 22. bis 26. April 2024 mit neun Projekten auf der Hannover Messe 2024. Die HANNOVER MESSE gilt als die Weltleitmesse der Industrie. Ihr diesjähriger Schwerpunkt…

Peptide auf interstellarem Eis

Dass einfache Peptide auf kosmischen Staubkörnern entstehen können, wurde vom Forschungsteam um Dr. Serge Krasnokutski vom Astrophysikalischen Labor des Max-Planck-Instituts für Astronomie an der Universität Jena bereits gezeigt. Bisher ging…

Wasserstoff-Produktion in der heimischen Garage

Forschungsteam der Frankfurt UAS entwickelt Prototyp für Privathaushalte: Förderzusage vom Land Hessen für 2. Projektphase. Wasserstoff als Energieträger der Zukunft ist nicht frei verfügbar, sondern muss aufwendig hergestellt werden. Das…

Partner & Förderer