Flüssigkristall-Moleküle formen Nano-Ringe

Blick in einen weitgehend geordneten Flüssigkristall in einer Nanopore. Bild: A. Zantop/M. Mazza/K. Sentker/P. Huber, Max-Planck Institut für Dynamik und Selbstorganisation/Technische Universität Hamburg (TUHH)

Die Wissenschaftler hatten eine besondere Form von Flüssigkristallen untersucht, die aus scheibenförmigen Molekülen aufgebaut sind, sogenannte diskotische Flüssigkristalle. In diesen Materialien können die Scheiben-Moleküle von selbst hohe, elektrisch leitfähige Säulen bilden, indem sie sich wie Münzen aufeinanderstapeln.

Die Forscher füllten diskotische Flüssigkristalle in Nanoporen in einem Silikatglas. Die zylindrischen Poren hatten einen Durchmesser von nur 17 Nanometern (millionstel Millimetern) und eine Tiefe von 0,36 Millimetern.

Dort wurden die Flüssigkristalle auf rund 100 Grad Celsius erhitzt und kühlten anschließend langsam ab. Dabei formten sich aus den zunächst ungeordneten Scheiben-Molekülen konzentrische Ringe, die wie rund gebogene Säulen angeordnet waren. Beginnend vom Rand der Pore bildete sich mit sinkender Temperatur schrittweise ein Ring nach dem anderen, bis bei etwa 70 Grad nahezu der gesamte Querschnitt der Pore mit konzentrischen Ringen aufgefüllt war. Beim erneuten Erhitzen verschwanden die Ringe nach und nach wieder.

„Diese Änderung der molekularen Struktur in dem eingeschlossenen Flüssigkristall lässt sich mit Methoden der Röntgendiffraktion sehr genau als Funktion der Temperatur verfolgen“, erläutert DESY-Forscherin Milena Lippmann aus dem Autorenteam, die die Experimente an DESYs Messstation P08 bei PETRA III vorbereitet und mit durchgeführt hat.

„Die Kombination aus Symmetrie und Einschluss führt zu neuen, unerwarteten Phasenübergängen“, ergänzt Ko-Autor Marco Mazza vom Göttinger Max-Planck-Institut für Dynamik und Selbstorganisation, wo der beobachtete Prozess mit Simulationsrechnungen nachgestellt worden war. MPI-Forscher Arne Zantop hatte zu diesem Zweck ein theoretisches und numerisches Modell für den Flüssigkristall in beschränkter Geometrie entwickelt, welches die experimentellen Ergebnisse bestätigt und bei deren Interpretation hilft.

Die einzelnen Ringe formten sich schrittweise bei bestimmten Temperaturen. „Das ermöglicht es, einzelne Nano-Ringe durch kleine Temperaturänderungen ein- und auszuschalten“, betont Hauptautorin Kathrin Sentker von der TUHH. Sie ist durch überraschend stufenartige Signalveränderungen in laser-optischen Experimenten auf diesen Prozess gestoßen.

Derartige quantisierte Zustandsänderungen kommen sonst typischerweise erst bei sehr tiefen Temperaturen vor. Das Flüssigkristall-System zeigt dieses Quantenverhalten jedoch sogar schon deutlich oberhalb der Raumtemperatur.

Da sich die opto-elektrischen Eigenschaften diskotischer Flüssigkristalle mit dem Entstehen von Molekülsäulen ändern, ist die in Nanoporen eingeschlossene Variante ein vielversprechender Kandidat für das Design neuer optischer Metamaterialien, deren Eigenschaften sich schrittweise über die Temperatur steuern lassen.

Die untersuchten Nanostrukturen könnten auch zu neuen Anwendungen in organischen Halbleitern führen, etwa zu temperaturschaltbaren Nanodrähten, erläutert Ko-Autor Andreas Schönhals von der Bundesanstalt für Materialforschung und -prüfung (BAM), der sich für die thermischen und elektrischen Eigenschaften dieser Systeme interessiert.

„Das beobachtete Phänomen ist ein gutes Beispiel dafür, wie vielseitig sich weiche Materie an extreme räumliche Beschränkungen anpassen kann und wie dies zu neuen Erkenntnissen in der Physik und zu neuen Design- und Kontrollprinzipien für die Selbstorganisation funktionaler Nanomaterialien führt“, erläutert Forschungsleiter Huber.

An der Studie waren auch das Helmholtz-Zentrum Berlin und die Technische Universität Czestochowa in Polen beteiligt. Sentker und Huber sind Mitglieder des Sonderforschungsbereichs (SFB) 986 „Maßgeschneiderte Multiskalige Materialsysteme – M3“, der seit 2012 von der Deutschen Forschungsgemeinschaft (DFG) gefördert wird und die materialwissenschaftlichen Kompetenzen im Großraum Hamburg bündelt.

DESY zählt zu den weltweit führenden Beschleunigerzentren und erforscht die Struktur und Funktion von Materie – vom Wechselspiel kleinster Elementarteilchen, dem Verhalten neuartiger Nanowerkstoffe und lebenswichtiger Biomoleküle bis hin zu den großen Rätseln des Universums. Die Teilchenbeschleuniger und die Nachweisinstrumente, die DESY an seinen Standorten in Hamburg und Zeuthen entwickelt und baut, sind einzigartige Werkzeuge für die Forschung. DESY ist Mitglied der Helmholtz-Gemeinschaft und wird zu 90 Prozent vom Bundesministerium für Bildung und Forschung und zu 10 Prozent von den Ländern Hamburg und Brandenburg finanziert.

Originalveröffentlichung
Quantized Self-Assembly of Discotic Rings in a Liquid Crystal Confined in Nanopores; Kathrin Sentker, Arne W. Zantop, Milena Lippmann, Tommy Hofmann, Oliver H. Seeck, Andriy V. Kityk, Arda Yildirim, Andreas Schönhals, Marco G. Mazza, and Patrick Huber; „Physical Review Letters”, 2018; DOI: 10.1103/PhysRevLett.120.067801

https://www.desy.de/aktuelles/news_suche/index_ger.html?openDirectAnchor=1339&am… – Text und Bildmaterial im Web
https://doi.org/10.1103/PhysRevLett.120.067801 – wissenschaftliche Originalveröffentlichung

Media Contact

Dr. Thomas Zoufal idw - Informationsdienst Wissenschaft

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neues topologisches Metamaterial

… verstärkt Schallwellen exponentiell. Wissenschaftlerinnen und Wissenschaftler am niederländischen Forschungsinstitut AMOLF haben in einer internationalen Kollaboration ein neuartiges Metamaterial entwickelt, durch das sich Schallwellen auf völlig neue Art und Weise…

Astronomen entdecken starke Magnetfelder

… am Rand des zentralen schwarzen Lochs der Milchstraße. Ein neues Bild des Event Horizon Telescope (EHT) hat starke und geordnete Magnetfelder aufgespürt, die vom Rand des supermassereichen schwarzen Lochs…

Faktor für die Gehirnexpansion beim Menschen

Was unterscheidet uns Menschen von anderen Lebewesen? Der Schlüssel liegt im Neokortex, der äußeren Schicht des Gehirns. Diese Gehirnregion ermöglicht uns abstraktes Denken, Kunst und komplexe Sprache. Ein internationales Forschungsteam…

Partner & Förderer