Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Flüchtigen Elementarteilchen auf der Spur

09.12.2015

FAU-Astroteilchenphysiker an europäischem KM3NeT-Neutrinoteleskop beteiligt

Am frühen Morgen des 3. Dezember 2015 haben Wissenschaftler und Ingenieure aus neun europäischen Ländern mit dem Aufbau von KM3NeT begonnen, dem zukünftig größten Neutrino-Detektor auf der nördlichen Erdhalbkugel.


Der auf den kugelförmigen Installationsrahmen aufgewickelte String vor der Installation

KM3NeT Collaboration


Ein Block des KM3NeT-Detektors enthält 115 Strings

KM3NeT Collaboration

Das Teleskop vor den Küsten Italiens und Frankreichs im Mittelmeer wird fundamentale Eigenschaften der Neutrinos untersuchen und eine Himmelskarte der Herkunftsrichtungen hochenergetischer kosmischer Neutrinos erstellen, die bei den gewaltigsten astrophysikalischen Prozessen im Universum entstehen.

Das Team um Prof. Dr. Gisela Anton und Prof. Dr. Uli Katz vom Erlangen Center for Astroparticle Physics (ECAP) der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) trägt zu KM3NeT mit Simulations- und Physikstudien sowie der Produktion von Sensor-Modulen bei. Außerdem sind die Erlanger verantwortlich für die Software-Entwicklung.

Neutrinos sind die flüchtigsten Elementarteilchen und ihr Nachweis erfordert die Instrumentierung enormer Nachweisvolumen: Das KM3NeT-Neutrinoteleskop wird mehr als einen Kubikkilometer Meereswasser umfassen. Es besteht aus einem Netzwerk von mehreren hundert vertikalen Detektor-Einheiten, sog. Strings.

Jeder String wird am Meeresboden verankert, durch eine Unterwasserboje an seinem oberen Ende straff gehalten und trägt 18 Lichtsensor-Module, die gleichmäßig über seine Länge von 700 m verteilt sind. In der absoluten Dunkelheit der Tiefsee werden damit die schwachen Lichtblitze nachgewiesen, die Reaktionen von Neutrinos mit den Atomkernen des Meereswassers anzeigen.

Der erste KM3NeT-String erreichte den italienischen KM3NeT-Standort südöstlich von Sizilien an Bord des Installationsschiffes Ambrosius Tide. Der String – auf einem kugelförmigen Rahmen aufgewickelt, ähnlich einem Wollknäuel – wurde in 3500 m Tiefe zum Meeresboden herabgelassen und mittels eines ferngesteuerten Tiefsee-Tauchboots an das Verbindungsmodul angeschlossen, von der das 100 km lange Hauptkabel zur Küstenstation in Portopalo di Capo Passero führt.

Marco Circella, technischer Direktor von KM3NeT, erklärt: „Die große Meerestiefe schirmt das Teleskop nicht nur völlig gegen Tageslicht ab, sondern auch weitgehend gegen Teilchen, die durch die kosmische Strahlung in der Atmosphäre erzeugt werden. Der Aufbau einer solch riesigen Forschungsinfrastruktur in mehreren Kilometer Wassertiefe ist eine enorme technische Herausforderung. So sind z.B. für die Unterwasser-Kabelverbindungen speziell angefertigte Steckverbinder notwendig, die Glasfaserverbindungen mit Mikrometer-Genauigkeit herstellen können. Die Besatzung der Ambrosius Tide ist spezialisiert auf solche schwierigen Tiefsee-Einsätze.“

Nach Überprüfung der elektrischen und der Glasfaser-Verbindung zur Küstenstation wurde das Entrollen des Strings eingeleitet. Ausgelöst durch ein akustisches Signal wurde der Installationsrahmen vom Anker gelöst und stieg langsam zur Oberfläche auf. Dabei rotierte er um eine horizontale Achse und gab Stück für Stück den String in seiner ganzen Länge frei. Der String wurde dann von der Küstenstation aus angeschaltet und lieferte die ersten Daten zur Küste.

Prof. Uli Katz, Physik- und Software-Direktor von KM3NeT und Inhaber des Lehrstuhls für Astroteilchenphysik am Erlangen Center for Astroparticle Physics (ECAP) der FAU zeigt sich begeistert: „Es ist ein überwältigender Erfolg, dass der erste String voll funktionsfähig ist und seit dem Einschalten hochwertige Daten liefert. Innerhalb weniger Stunden konnten bereits die ersten Teilchen von Reaktionen kosmischer Strahlung in der Atmosphäre rekonstruiert werden. Mit großer Vorfreude erwarten wir die Daten des wachsenden KM3NeT-Detektors.“ Der Erlanger Beitrag zu KM3NeT setzt sich aus Simulations- und Physikstudien sowie der Produktion von Sensor-Modulen zusammen. Das ECAP-Team ist außerdem verantwortlich für die Software-Entwicklung.

Rosanna Cocimano, die für die Stromversorgung von KM3NeT verantwortlich ist, führt aus: „Ein elektro-optisches Netzwerk von Kabeln verteilt die Hochspannung von der Küste an die Lichtsensor-Module in der Tiefsee. Die gemessenen Lichtsignale werden in den Modulen digitalisiert und über Glasfaserverbindungen zur Küstenstation übertragen.“

Die erste erfolgreiche Datenentnahme aus der Tiefsee mit der bahnbrechenden, von der KM3NeT-Kollaboration entwickelten Technologie ist ein entscheidender Meilenstein für das Projekt und stellt den vorläufigen Höhepunkt eines Jahrzehnts intensiver Forschung und Entwicklung in den vielen beteiligten Forschungsinstituten dar.

Maarten de Jong, Sprecher und Direktor von KM3NeT, erklärt: „Dieser wichtige Schritt bestätigt Design und Technologie des KM3NeT-Detektors. Die Kollaboration wird nun mit großer Zuversicht mit der Massenproduktion von Detektor-Strings und ihrer Installation an den KM3NeT-Standorten in Italien und vor der französischen Mittelmeerküste bei Toulon beginnen. Ein neues Zeitalter der Neutrinoastronomie hat angefangen.“

Partnerinstitute der KM3NeT-Kollaboration:
France: Centre de Physique des Particules de Marseille (CPPM), AstroParticule et Cosmologie (APC, Paris), Institute Pluridisciplinaire Hubert Curien (IPHC, Strasbourg),
Germany: Erlangen Centre for Astroparticle Physics (ECAP) und Dr.-Karl-Remeis-Sternwarte Bamberg (beide FAU), Kepler Centre for Astro and Particle Physics (Tübingen), Julius-Maximilian-Universität Würzburg,
Greece: National Centre for Scientific Research “Demokritos” (NCSR-D, Athens), National and Kapodistrian University of Athens, Hellenic Open University (Patras), Aristotle University of Thessaloniki, Technological Education Institute of Piraeus
Italy: Laboratori Nazionali del Sud (INFN/LNS, Catania), University of Bari, University of Bologna, University of Catania, University of Genova, University of Napoli, University of Pisa, University La Sapienza (Rome), University of Salerno, Napoli Gruppo Collegeato di Salerno, Laboratori Nazionali di Frascati (INFN/LNF), Istituto Nazionali di Geofisica e Vulcanologia (INGV, Rome)
Morocco: Mohammed First University (Oujda)
The Netherlands: National institute for subatomic physics (Nikhef, Amsterdam), Universiteit van Amsterdam, Universiteit van Leiden, Universiteit van Groningen (RUG/KVI), Nationaal Instituut voor Onderzoek der Zee (NIOZ, Texel), TNO
Poland: National Centre for Nuclear Research (NCBJ, Warsaw)
Spain: Instituto de Fisica Corpuscular (IFIC/CSIC, Valencia), Polytechnical University Valencia (UPV), Technical University of Catalonia (UPC, Barcelona)

Weitere Institute sind als Beobachter eingebunden.

Ansprechpartner:
Prof. Dr. Uli Katz
KM3NeT Physik- und Software-Direktor
Erlangen Centre for Astroparticle Physics, FAU
Tel: +4991318527072
katz@pysik.uni-erlangen.de

Weitere Informationen:

http://www.km3net.org

Dr. Susanne Langer | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht VLT macht den präzisesten Test von Einsteins Allgemeiner Relativitätstheorie außerhalb der Milchstraße
22.06.2018 | ESO Science Outreach Network - Haus der Astronomie

nachricht Neue Phänomene im magnetischen Nanokosmos
22.06.2018 | Max-Planck-Institut für Intelligente Systeme

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics