Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Feuerwerk beim Sternenwachstum

22.11.2016

SOFIA-Daten sind ausschlaggebend für das Verständnis der Entstehung massereicher Sterne

Ein internationales Forscherteam um Dr. Alessio Caratti o Garatti vom Dublin Institute for Advanced Studies (Irland) hat erstmals beobachtet, wie ein massereicher junger Stern durch den Einfall von Materie wächst. Dabei waren die Daten des abbildenden Ferninfrarot-Spektrometers FIFI-LS der Universität Stuttgart an Bord der fliegenden Infrarotsternwarte SOFIA von entscheidender Bedeutung. Die Arbeit wurde in dem Fachjournal Nature Physics veröffentlicht.*


Künstlerische Darstellung des Helligkeitsausbruchs des jungen, massereichen Sterns S255 NIRS 3

© Universität Stuttgart/DSI

Die Astronomen haben den Stern S255IR NIRS 3 (Kurzform: NIRS 3), der 20-mal schwerer ist als unsere Sonne, mit SOFIA – dem Stratosphären Observatorium für Infrarot Astronomie – während dieses Wachstums beobachtet und diese Informationen mit Bildern und Spektren anderer Weltklasse-Observatorien (Gemini Observatory, ESO/VLT, Calar Alto Observatory, ESO/MPG) kombiniert.

Mit diesen Daten haben Caratti o Garatti und seine Kollegen – zu denen auch Prof. Alfred Krabbe und Dr. Christian Fischer von der Universität Stuttgart gehören – bestätigt, dass schwere Sterne vermutlich genau wie ihre weniger massereichen Geschwister durch den Kollaps von interstellaren Gas- und Staubwolken entstehen.

Im Innern dieser Gebiete formieren sich Protosterne, die von einer so genannten Akkretionsscheibe (einer rotierenden Scheibe, die Materie in Richtung des Zentrums transportiert), umgeben sind. Material fällt von außen auf diese Scheibe, wandert aufgrund der Schwerkraft nach innen und stürzt vom Innenrand der Scheibe auf den Protostern. So gewinnt der junge Stern an Masse und die dabei freiwerdende Energie wird abgestrahlt.

Dieser Massezuwachs findet allerdings nicht stetig, sondern in Form von Wachstumsschüben statt, da die Materie in den Akkretionsscheiben nicht ebenmäßig verteilt ist, sondern in Klumpen. Wenn diese auf den Stern stürzen, verursachen sie dort einen plötzlichen Helligkeitsanstieg. Erstmals konnten Wissenschaftler dieses Feuerwerk nun auch bei einem so massereichen Objekt wie NIRS 3 beobachten und zeigen, dass die Entstehung von massereichen Sternen als vergrößerte Version der Formation sonnenähnlicher, masseärmerer Sterne verstanden werden kann.

Der wesentliche Unterschied ist, dass massereichere Sterne von einer größeren Akkretionsscheibe umgeben sind und mit höherer Wachstumsrate auf deutlich kürzeren Zeitskalen entstehen: 100.000 Jahre statt mehrere Millionen Jahre.

Energiemenge der Sonne aus 100.000 Jahren

“Im Moment kann nur SOFIA die langwelligen Daten zur Verfügung stellen, die nötig sind, um wichtige Parameter des Helligkeitsausbruchs so junger, massiver Sterne zu bestimmen“, erklärt Alfred Krabbe, Leiter des Deutschen SOFIA Instituts der Universität Stuttgart. Er ist außerdem der Principle Investigator von FIFI-LS. “In nur neun Monaten hat dieser Ausbruch die gleiche Menge Energie produziert, wie unsere Sonne in 100.000 Jahren“, so Krabbe weiter. Die Astronomen konnte sogar ableiten, wie viel Masse während dieser Zeit auf den jungen Stern gestürzt sind: Etwa so viel wie zwei Riesenplaneten von der Masse des Jupiters.

Frühere Beobachtungen von NIRS 3 im nahen Infraroten hatten bereits gezeigt, dass der junge Stern vermutlich von einer Scheibe umgeben ist, von der sogar Ausströmungen (Jets) ausgehen, die überschüssiges Material senkrecht zur Akkretionsscheibe mit hohen Geschwindigkeiten nach außen schleudern. Neue Nahinfrarotaufnahmen von NIRS 3 im Zeitraum von November 2015 bis April 2016 zeigen zum einen den plötzlichen Anstieg der Helligkeit des Protostern selbst sowie der ausströmenden Nebel.

Glücklicherweise hatte Dr. Jochen Eislöffel von der Thüringer Landessternwarte Tautenburg und ebenfalls Co-Autor der Nature Veröffentlichung, flexible SOFIA-Beobachtungszeit für sogenannte Targets of Opportunity erhalten. So konnte NIRS 3 während seines Wachstumsschubes mit den SOFIA-Instrumenten FORCAST (bei 7,7, 11,1, 19,7, 31,5 und 37,1 Mikrometern) und FIFI-LS (bei 65, 90, 140 und 160 Mikrometern) beobachtet werden. „Wenn man bedenkt, dass massereiche Sterne ziemliche seltene Objekte sind und ihre Helligkeitsausbrüche nur einen Bruchteil ihres Lebens andauern, dann ist es ein großer Glücksfall, dass wir NIRS 3 genau in dieser Phasen beobachten konnten“, bemerkt Jochen Eislöffel.

*) Originalpublikation: “Disk-mediated accretion burst in a high-mass young stellar object”, A. Caratti o Garatti, B. Stecklum, R. Garcia Lopez, J. Eislöffel, T. P. Ray, A. Sanna, R. Cesaroni, C. M.Walmsley, R. D. Oudmaijer,W. J. deWit, L. Moscadelli, J. Greiner, A. Krabbe, C. Fischer, R. Klein and J. M. Ibañez , Nature Physics Journal Nov. 14th 2016, DOI: 10.1038/NHPYS3942.

Ausführliche Zusammenfassung:
http://www.dsi.uni-stuttgart.de/aktuelles/news/news_0056.html

Kontakt:
Für Medien: Dörte Mehlert, Deutsches SOFIA Institut an der Universität Stuttgart, Tel. +49-711-685-69632, Email: mehlert@dsi.uni-stuttgart.de

Wissenschaftliches Team: Alessio Caratti o Garatti, Dublin Institute for Advanced Studies, Tel. +353-1-4406656-342, Email: alessio@cp.dias.ie

SOFIA, das Stratosphären Observatorium Für Infrarot Astronomie, ist ein Gemeinschaftsprojekt des Deutschen Zentrums für Luft- und Raumfahrt e.V. (DLR; Fond: 50OK0901 und 50OK1301) und der National Aeronautics and Space Administration (NASA). Es wird auf Veranlassung des DLR mit Mitteln des Bundesministerium für Wirtschaft und Energie aufgrund eines Beschlusses des Deutschen Bundestages und mit Mitteln des Landes Baden-Württemberg und der Universität Stuttgart durchgeführt. Der wissenschaftliche Betrieb wird auf deutscher Seite vom Deutschen SOFIA Institut (DSI) der Universität Stuttgart koordiniert, auf amerikanischer Seite von der Universities Space Research Association (USRA). Die Entwicklung der deutschen Instrumente ist finanziert mit Mitteln der Max-Planck-Gesellschaft (MPG), der Deutschen Forschungsgemeinschaft (DFG) und des DLR.

Andrea Mayer-Grenu | idw - Informationsdienst Wissenschaft

Weitere Berichte zu: Akkretionsscheibe Astronomie DLR ESO NIRS Nature Physics SOFIA Stern

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neue Anwendungen für Mikrolaser in der Quanten-Nanophotonik
20.07.2018 | Technische Universität Berlin

nachricht Superscharfe Bilder von der neuen Adaptiven Optik des VLT
18.07.2018 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: Rostocker Forscher entwickeln autonom fahrende Kräne

Industriepartner kommen aus sechs Ländern

Autonom fahrende, intelligente Kräne und Hebezeuge – dieser Ingenieurs-Traum könnte in den nächsten drei Jahren zur Wirklichkeit werden. Forscher aus dem...

Im Focus: Superscharfe Bilder von der neuen Adaptiven Optik des VLT

Das Very Large Telescope (VLT) der ESO hat das erste Licht mit einem neuen Modus Adaptiver Optik erreicht, die als Lasertomografie bezeichnet wird – und hat in diesem Rahmen bemerkenswert scharfe Testbilder vom Planeten Neptun, von Sternhaufen und anderen Objekten aufgenommen. Das bahnbrechende MUSE-Instrument kann ab sofort im sogenannten Narrow-Field-Modus mit dem adaptiven Optikmodul GALACSI diese neue Technik nutzen, um Turbulenzen in verschiedenen Höhen in der Erdatmosphäre zu korrigieren. Damit ist jetzt möglich, Bilder vom Erdboden im sichtbaren Licht aufzunehmen, die schärfer sind als die des NASA/ESA Hubble-Weltraumteleskops. Die Kombination aus exquisiter Bildschärfe und den spektroskopischen Fähigkeiten von MUSE wird es den Astronomen ermöglichen, die Eigenschaften astronomischer Objekte viel detaillierter als bisher zu untersuchen.

Das MUSE-Instrument (kurz für Multi Unit Spectroscopic Explorer) am Very Large Telescope (VLT) der ESO arbeitet mit einer adaptiven Optikeinheit namens GALACSI. Dabei kommt auch die Laser Guide Stars Facility, kurz ...

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Stadtklima verbessern, Energiemix optimieren, sauberes Trinkwasser bereitstellen

19.07.2018 | Veranstaltungen

Innovation – the name of the game

18.07.2018 | Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neue Anwendungen für Mikrolaser in der Quanten-Nanophotonik

20.07.2018 | Physik Astronomie

Need for speed: Warum Malaria-Parasiten schneller sind als die menschlichen Abwehrzellen

20.07.2018 | Biowissenschaften Chemie

Die Gene sind nicht schuld

20.07.2018 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics