Feuer ohne Rauch: Auf den Spuren der urtümlichsten Schwarzen Löcher

Das Weltraumteleskop Spitzer vor einer Infrarotdarstellung des Nachthimmels (computergenerierte Darstellung). Mit Hilfe von Spitzer haben Astronomen jetzt die urtümlichsten Schwarzen Löcher im Universum entdeckt. Bild: NASA / JPL-Caltech <br>

Die zwei Schwarzen Löcher sind 12,7 Milliarden Jahre von der Erde entfernt, und wir sehen sie – genauer: die aktiven Galaxienkerne, für deren extrem helles Leuchten sie verantwortlich sind – daher so, wie sie vor 12,7 Milliarden Jahren waren, weniger als eine Milliarde Jahre nach dem Urknall. Die Existenz solcher urtümlichen Schwarzen Löcher war lange vermutet worden, aber erst jetzt konnten sie tatsächlich beobachtet werden. Die Ergebnisse werden am 18. März 2010 in der Fachzeitschrift Nature veröffentlicht.

Quasare sind die Zentralregionen von Galaxien, die aktive Schwarze Löcher beherbergen. Solche Schwarzen Löcher besitzen Akkretionsscheiben: hell leuchtende Scheiben aus Gas und Staub, deren Materie auf Spiralbahnen auf das Schwarze Loch zuläuft, bevor sie darin verschwindet. Solche Scheiben gehören zu den hellsten Objekten im ganzen Universum. Quasare leuchten so hell, dass es noch auf größte Entfernung möglich ist, Informationen über ihre physikalischen Eigenschaften zu gewinnen.

Licht der entferntesten bekannten Quasare benötigt rund 13 Milliarden Jahre, um uns zu erreichen. Ein Blick auf diese Objekte ist daher ein Blick, der uns 13 Milliarden Jahre in die Vergangenheit führt. Daher würden wir erwarten, vergleichsweise primitive Vorläufer der modernen Quasare zu sehen, die gerade erst im Entstehen begriffen sind. Tatsächlich aber zeigte sich 2003 bei den ersten Beobachtungen, dass die entferntesten Quasare sich nicht wesentlich von ihren modernen Gegenstücken unterschieden – zur großen Überraschung der Forscher.

Nun hat eine Gruppe von Astronomen um Linhua Jiang (Universität Arizona, Tucson), zu der auch Forscher des Max-Planck-Instituts für Astronomie in Heidelberg und des Max-Planck-Instituts für Extraterrestrische Physik in Garching gehören, erstmals Objekte beobachtet, bei denen es sich tatsächlich um eine frühe, primitive Vorform moderner Quasare zu handeln scheint.

Die Astronomen nutzten das NASA-Weltraumteleskop Spitzer, um Infrarotlicht der entferntesten Quasare aufzufangen. Mit Infrarotbeobachtungen lässt sich die charakteristische Strahlung identifizieren, die heißer Staub aussendet, und solcher Staub ist typischer Bestandteil moderner Quasare: Die hell leuchtende Materiescheibe (sie ist etwa so groß wie unser Sonnensystem) ist bei solchen Quasaren von einem riesigen Staubtorus umgeben (der rund tausend Mal so groß ist wie die Materiescheibe). Bei zweien der 20 beobachteten Quasare fehlten die Anzeichen für heißen Staub. Das legt nahe, dass es sich um frühe primitive Quasare handelt: Das frühe Universum enthielt überhaupt keinen Staub, und auch die ersten Quasare sollten dementsprechend zwar sehr heiß und hell sein, aber keine Staubpartikel enthalten: Feuer ohne Rauch. Die Existenz solcher staubfreien Quasare war seit längerem vermutet worden. Allerdings hatte man sie noch nie zuvor beobachten können.

Anschließend untersuchten die Astronomen alle zu den fernen Quasaren verfügbaren Daten, und verglichen sie mit den Messergebnissen für modernere, der Erde nähere Quasare. Wie sich herausstellte, ist keiner der anderen Quasare – insbesondere keiner der moderneren Quasare – auch nur annähernd so staubfrei wie die zwei primitiven Exemplare. Zusätzlich fanden die Astronomen bei den entferntesten Quasaren einen Zusammenhang zwischen der Masse des zentralen Schwarzen Lochs und dem Staubgehalt: Je mehr Masse das zentrale Schwarze Loch besitzt, umso mehr Staub enthält der Quasar. Das deutet auf einen Entwicklungsprozess hin, bei dem das zentrale Schwarze Loch rasch wächst, indem es sich Materie einverleibt, während gleichzeitig mehr und mehr heißer Staub produziert wird.

Damit deutet alles darauf hin, dass Jiang und seine Kollegen mit ihren Beobachtungen tatsächlich einen ersten Einblick in die Entwicklungsgeschichte der frühen Quasare gewonnen haben, und dass sich in den zwei staubfreien Quasaren die urtümlichsten Schwarzen Löcher verbergen, die wir kennen: Die Beobachtungen zeigen Quasare in einem frühen Evolutionsstadium, die zu jung sind, als dass sich um sie herum bereits nachweisbare Mengen von Staub gebildet hätten.

Kontakt

Dr. Fabian Walter (Koautor)
Max-Planck-Institut für Astronomie, Heidelberg
(0|+49) 6221 – 528 225
E-mail: walter@mpia.de
Hintergrundinformation
Die hier beschriebenen Ergebnisse erscheinen am 18. März 2010 als Jiang et al. „Dust-Free Quasars in the Early Universe“ in der Fachzeitschrift Nature.

Die Mitglieder der Forschergruppe sind Linhua Jiang and Xiaohui Fan (University of Arizona, Tucson), W. N. Brandt (Pennsylvania State University), Chris L. Carilli (National Radio Astronomy Observatory, Socorro, New Mexico), Eiichi Egamii (University of Arizona, Tucson), Dean C. Hines (Space Science Institute, Boulder, Colorado), Jaron D. Kurk (Max-Planck-Institut für Extraterrestrische Physik, vormals am Max-Planck-Institut für Astronomie), Gordon T. Richards (Drexel University, Philadelphia), Yue Shen (Harvard-Smithsonian Center for Astrophysics, Cambridge, MA), Michael A. Strauss (Princeton University, Princeton), Marianne Vestergaard (University of Arizona und Niels-Bohr-Institut, Kopenhagen), und Fabian Walter (Max-Planck-Institut für Astronomie).

Xiaohui Fan war während eines Teils der hier beschriebenen Forschungsarbeit Gast am Max-Planck-Institut für Astronomie.

Media Contact

Dr. Markus Pössel Max-Planck-Institut

Weitere Informationen:

http://www.mpia.de

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Bakterien für klimaneutrale Chemikalien der Zukunft

For­schen­de an der ETH Zü­rich ha­ben Bak­te­ri­en im La­bor so her­an­ge­züch­tet, dass sie Me­tha­nol ef­fi­zi­ent ver­wer­ten kön­nen. Jetzt lässt sich der Stoff­wech­sel die­ser Bak­te­ri­en an­zap­fen, um wert­vol­le Pro­duk­te her­zu­stel­len, die…

Batterien: Heute die Materialien von morgen modellieren

Welche Faktoren bestimmen, wie schnell sich eine Batterie laden lässt? Dieser und weiteren Fragen gehen Forschende am Karlsruher Institut für Technologie (KIT) mit computergestützten Simulationen nach. Mikrostrukturmodelle tragen dazu bei,…

Porosität von Sedimentgestein mit Neutronen untersucht

Forschung am FRM II zu geologischen Lagerstätten. Dauerhafte unterirdische Lagerung von CO2 Poren so klein wie Bakterien Porenmessung mit Neutronen auf den Nanometer genau Ob Sedimentgesteine fossile Kohlenwasserstoffe speichern können…

Partner & Förderer