Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Festkörperphysik: Vorhersage der Quantenphysik experimentell nachgewiesen

07.04.2020

Vor 90 Jahren postulierte der Physiker Hans Bethe, dass in bestimmten magnetischen Festkörpern ungewöhnliche Muster auftreten. Nun ist es einem internationalen Team gelungen, solche Bethe-Strings erstmals experimentell nachzuweisen. Sie führten Neutronenstreuexperimente an verschiedenen Neutronenquellen durch, darunter auch Messungen am einzigartigen Hochfeldmagneten des BER II am HZB. Die experimentellen Daten sind in hervorragender Übereinstimmung mit der theoretischen Vorhersage von Bethe und beweisen einmal mehr die Leistungsfähigkeit der Quantenphysik.

Die regelmäßige Anordnung der Atome in einem Kristall ermöglicht komplexe Wechselwirkungen, die zu neuen Materiezuständen führen können. So gibt es auch Kristalle, die zwar räumlich dreidimensional sind, aber nur entlang einer Richtung magnetische Wechselwirkungen aufweisen, so dass sie magnetisch eindimensional sind.


Im Grundzustand sind die magnetischen Momente entweder auf- oder abwärts gerichtet, die zum äußeren Magnetfeld antiparallelen Spins (rot) sind nie zusammen (rechts). Durch Anregung können sich weitere Spins antiparallel ausrichten und Bethe-Ketten entstehen (weiße Spins, links).

© HZB

Zeigen aufeinanderfolgende magnetische Momente in entgegengesetzte Richtungen, dann haben wir es mit einem eindimensionalen Antiferromagneten zu tun. Hans Bethe beschrieb dieses System erstmals 1931 theoretisch.

Dabei folgerte er aus seiner Modellierung auch, dass es möglich sein müsse, durch Energiezufuhr auch Ketten von zwei oder mehr magnetischen Momenten zu erzeugen, die in eine Richtung zeigen. Diese Ketten nannte man Bethe-Strings.

Diese Bethe-Strings lassen sich unter „normalen“ Bedingungen nicht beobachten, sie sind instabil und werden durch andere Merkmale des Systems verdeckt. Nun gelang es einer internationalen Kooperation um die HZB-Physikerin Prof. Bella Lake, durch Anlegen eines starken äußeren Magnetfeldes diese Bethe-Strings zu isolieren und experimentell sichtbar zu machen.

Zunächst stellte ein Experte aus dem Lake-Team Kristalle aus SrCo2V2O8 her, einem eindimensionalen Antiferromagnetikum, das als Modellsystem dient. Nur die Kobaltatome haben magnetische Momente, sie richten sich alle nur entlang einer Kristallachse aus, wobei sich benachbarte Momente gegenseitig aufheben.

An der Berliner Neutronenquelle BER II konnte die Probe mit Neutronen unter extrem hohen Magnetfeldern bis zu 25,9 Tesla untersucht werden.

Aus den Daten erhielten die Physiker ein Phasendiagramm der Probe als Funktion des Magnetfeldes sowie weitere Informationen über die inneren magnetischen Muster. Diese konnten sie mit den Voraussagen von Bethe, die von einer theoretischen Gruppe unter der Leitung von Jianda Wu quantifiziert wurden.

"Die experimentellen Daten sind in hervorragender Übereinstimmung mit der Theorie", sagt Bella Lake. "Wir konnten zwei und sogar drei Ketten von Bethe-Strings eindeutig identifizieren und ihre Energieabhängigkeit bestimmen. Diese Ergebnisse zeigen uns einmal mehr, wie gut Quantenphysik experimentelle Ergebnisse erklären kann."

Originalpublikation:

Nature Physics (2020): Dispersions of Many-Body Bethe Strings Anup Kumar Bera, Jianda Wu, Wang Yang, Robert Bewley, Martin Boehm, Jianhui Xu, Maciej Bartkowiak, Oleksandr Prokhnenko, Bastian Klemke, A. T. M. Nazmul Islam, Joseph Mathew Law, Zhe Wang and Bella Lake

DOI: 10.1038/s41567-020-0835-7

Dr. Antonia Rötger | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH
Weitere Informationen:
https://www.helmholtz-berlin.de/pubbin/news_seite?nid=21228;sprache=de;seitenid=1

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Ein Schritt auf dem Weg zum Spektrometer für jedermann
03.06.2020 | Universität Leipzig

nachricht Der gebrochene Spiegel: Erstmals Messung der Paritätsverletzung in Molekülen möglich?
03.06.2020 | Johannes Gutenberg-Universität Mainz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Magnetische Kristallschichten für den Computer von Morgen

Ist die Elektronik, so wie wir sie kennen, am Ende?

Der Einsatz moderner elektronischer Schaltkreise für immer leistungsfähigere Rechentechnik und mobile Endgeräte stößt durch die zunehmende Miniaturisierung in...

Im Focus: K-State study reveals asymmetry in spin directions of galaxies

Research also suggests the early universe could have been spinning

An analysis of more than 200,000 spiral galaxies has revealed unexpected links between spin directions of galaxies, and the structure formed by these links...

Im Focus: Neue Messung verschärft altes Problem

Seit Jahrzehnten rätseln Astrophysiker über zwei markante Röntgen-Emissionslinien von hochgeladenem Eisen: ihr gemessenes Helligkeitsverhältnis stimmt nicht mit dem berechneten überein. Das beeinträchtigt die Bestimmung der Temperatur und Dichte von Plasmen. Neue sorgfältige, hoch-präzise Messungen und Berechnungen mit modernsten Methoden schließen nun alle bisher vorgeschlagenen Erklärungen für diese Diskrepanz aus und verschärfen damit das Problem.

Heiße astrophysikalische Plasmen erfüllen den intergalaktischen Raum und leuchten hell in Sternatmosphären, aktiven Galaxienkernen und Supernova-Überresten....

Im Focus: New measurement exacerbates old problem

Two prominent X-ray emission lines of highly charged iron have puzzled astrophysicists for decades: their measured and calculated brightness ratios always disagree. This hinders good determinations of plasma temperatures and densities. New, careful high-precision measurements, together with top-level calculations now exclude all hitherto proposed explanations for this discrepancy, and thus deepen the problem.

Hot astrophysical plasmas fill the intergalactic space, and brightly shine in stellar coronae, active galactic nuclei, and supernova remnants. They contain...

Im Focus: Neuartiges Covid-19-Schnelltestverfahren auf Basis innovativer DNA-Polymerasen entwickelt

Eine Forschungskooperation der Universität Konstanz unter Federführung von Professor Dr. Christof Hauck (Fachbereich Biologie) mit Beteiligung des Klinikum Konstanz, eines Konstanzer Diagnostiklabors und des Konstanzer Unternehmens myPOLS Biotec, einer Ausgründung aus der Arbeitsgruppe für Organische Chemie / Zelluläre Chemie der Universität Konstanz, hat ein neuartiges Covid-19-Schnelltestverfahren entwickelt. Dieser Test ermöglicht es, Ergebnisse in der Hälfte der Zeit zu ermitteln – im Vergleich zur klassischen Polymerase-Ketten-Reaktion (PCR).

Die frühe Identifikation von Patienten, die mit dem neuartigen Coronavirus (SARS-CoV-2) infiziert sind, ist zentrale Voraussetzung bei der globalen Bewältigung...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Gebäudewärme mit "grünem" Wasserstoff oder "grünem" Strom?

26.05.2020 | Veranstaltungen

Dresden Nexus Conference 2020 - Gleicher Termin, virtuelles Format, Anmeldung geöffnet

19.05.2020 | Veranstaltungen

Urban Transport Conference 2020 in digitaler Form

18.05.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Magnetische Kristallschichten für den Computer von Morgen

03.06.2020 | Informationstechnologie

Wundheilung detailliert aufgeschlüsselt

03.06.2020 | Biowissenschaften Chemie

Ein einzelnes Gen bestimmt das Geschlecht von Pappeln

03.06.2020 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics