Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Fernbeziehung in 100 Femtosekunden

10.04.2019

Regensburger Physiker beobachten, wie sich Elektron-Loch-Paare blitzschnell auseinanderleben und doch stark gebunden bleiben

Unser technologischer Fortschritt basiert wesentlich darauf, Elektronen auf kürzesten Längen- und Zeitskalen zu kontrollieren. Regensburger Physikern ist dies nun in einer Schichtstruktur aus atomar dünnen Materialien auf der Zeitskala einer einzelnen Lichtschwingung gelungen.


Künstlerische Darstellung einer Interlagenexzitons in einer Schichtstruktur aus Übergangsmetall-Dichalkogeniden. Das Elektron (blau) und das Loch (rot) wechselwirken über die atomare Distanz hinweg.

Abbildung: Brad Baxley (parttowhole.com) – Zur ausschließlichen Verwendung im Rahmen der Berichterstattung zu dieser Pressemitteilung.

Sie konnten verfolgen, wie in einem gebundenen Elektron-Loch-Paar das Elektron von einer Atomlage zur nächsten hüpft und somit gewissermaßen ein Ladungsträgerpaar in Fernbeziehung, ein sogenanntes „Interlagenexziton“, entsteht. Die Ergebnisse wurden in der renommierten Fachzeitschrift Nature Materials veröffentlicht.

Um Elektronik leistungsfähiger zu machen, werden heute immer kompaktere Schaltkreise entwickelt. Das Limit ist dabei die atomare Längenskala. Neue schichtartige Kristalle aus sogenannten Übergangsmetall-Dichalkogeniden, die sich in Dicken von wenigen Atomlagen herstellen lassen, versprechen ultimativ dünne Bauelemente, wie Solarzellen und Transistoren.

Allerdings verhalten sich Ladungsträger in nur zwei Dimensionen sehr eigenwillig. Regt man beispielsweise ein Elektron durch Absorption von Licht in einem Übergangsmetall-Dichalkogenid an, so lässt es auf seinem ursprünglichen Platz eine Fehlstelle, ein sogenanntes Loch, zurück. Elektron und Loch können ein gebundenes Paar, ein Exziton, bilden.

Dabei umkreist das negativ geladene Elektron das positiv geladene Loch, ähnlich wie ein Elektron im Wasserstoffatom den Kern umkreist. Wegen der starken Anziehung zwischen Elektronen und Löchern sind diese Exzitonen auch bei Raumtemperatur stabil.

Für wichtige Anwendungen, wie etwa Solarzellen, will man Elektronen und Löcher allerdings räumlich trennen. Dies gelingt, indem man zwei verschiedene Dichalkogenide aufeinanderstapelt. Regensburger Physiker um die Professoren Rupert Huber, Tobias Korn, John Lupton und Christian Schüller haben nun in einer Zusammenarbeit mit der Gruppe von Professor Ermin Malic von der Chalmers University in Schweden genau diese Ladungstrennung der Exzitonen über nur zwei atomar dünne Schichten hinweg beobachtet.

Hierzu regten sie Elektronen durch ultrakurze Lichtblitze in nur einer der beiden Lagen an. Dadurch entstehen innerhalb dieser Lage Exzitonen. Bleiben sie in dieser Lage, sind sie sehr kurzlebig, denn Elektronen und Löcher rekombinieren sehr schnell. Dies bedeutet, dass das Elektron wieder seinen ursprünglichen Platz einnimmt. In einer Schichtstruktur hingegen kann das Elektron auch in die benachbarte Lage hüpfen – es entsteht ein räumlich getrenntes, sogenanntes Interlagenexziton.

„Weil die Lagen atomar dünn sind, spürt das Elektron immer noch das Loch, sie können also über die Lage hinweg weiterhin miteinander wechselwirken“, erklärt Fabian Mooshammer, Doktorand und Koautor der Studie. Durch die räumliche Trennung dauert es aber wesentlich länger, bis das Elektron wieder auf seinen Platz zurückfindet. Diese deutlich längere Lebenszeit ist nur einer der Gründe, warum Interlagenexzitonen in den letzten Jahren sowohl in der Grundlagenforschung als auch in der Optoelektronik für viel Aufregung gesorgt haben.

Die Wissenschaftler konnten das Verhalten dieser Interlagenexzitonen während und nach ihrer Entstehung beobachten. Hierzu verwendeten Sie eine selbst entwickelte Superzeitlupenkamera, mit der sich Vorgänge untersuchen lassen, welche innerhalb weniger Femtosekunden – dem Millionsten Teil einer Milliardstel Sekunde – ablaufen. „Wir können dadurch weltweit erstmals den Entstehungsprozess eines Interlagenexzitons beobachten und vermessen, wie stark Elektron und Loch gebunden bleiben“, erzählt Philipp Merkl, Erstautor der Publikation.

Außerdem war es den Forschern möglich, die Dynamik des Entstehungsprozesses gezielt zu beeinflussen. Hierzu verwendeten sie eine weitere Besonderheit der Heterostrukturen: Sie verdrehten die beiden Lagen gegeneinander. Dadurch ändern sich die elektronischen und optischen Eigenschaften der Schichtstruktur, was wiederum den Ladungstransfer maßgeblich bestimmt.

Die neuen Erkenntnisse markieren einen wichtigen Meilenstein bei der Entwicklung neuartiger maßgeschneiderter Stapelstrukturen und könnten den Weg für eine neue Generation ultimativ kompakter und effizienter Elektronik, Optoelektronik und Informationstechnologien ebnen.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Rupert Huber
Lehrstuhl für Experimentelle und Angewandte Physik
Universität Regensburg
Tel.: 0941 943-2067
E-Mail: rupert.huber@ur.de

Originalpublikation:

P. Merkl, F. Mooshammer, P. Steinleitner, A. Girnghuber, K.-Q. Lin, P. Nagler, J. Holler,
C. Schüller, J. M. Lupton, T. Korn, S. Ovesen, S. Brem, E. Malic and R. Huber, “Ultrafast transition between exciton phases in van der Waals heterostructures”, Nature Materials (2019).
DOI: 10.1038/s41563-019-0337-0
https://www.nature.com/articles/s41563-019-0337-0

Christina Glaser | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Radioteleskop LOFAR blickt tief in den Blitz
18.04.2019 | Karlsruher Institut für Technologie

nachricht Erster astrophysikalischer Nachweis des Heliumhydrid-Ions
18.04.2019 | Max-Planck-Institut für Radioastronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Neues „Baustein-Konzept“ für die additive Fertigung

Volkswagenstiftung fördert Wissenschaftler aus dem IPF Dresden bei der Erkundung eines innovativen neuen Ansatzes im 3D-Druck

Im Rahmen Ihrer Initiative „Experiment! - Auf der Suche nach gewagten Forschungsideen“
fördert die VolkswagenStiftung ein Projekt, das von Herrn Dr. Julian...

Im Focus: Vergangenheit trifft Zukunft

autartec®-Haus am Fuß der F60 fertiggestellt

Der Hafen des Bergheider Sees beherbergt seinen ersten Bewohner. Das schwimmende autartec®-Haus – entstanden im Rahmen eines vom Bundesministerium für Bildung...

Im Focus: Hybrid-Neuronen-Netzwerke mit 3D-Lithografie möglich

Netzwerken aus wenigen Neuronenzellen können gezielt künstliche dreidimensionale Strukturen vorgegeben werden. Sie werden dafür elektronisch verschaltet. Dies eröffnet neue Möglichkeiten, Fehler in neuralen Netzwerken besser zu verstehen und technische Anwendungen mit lebenden Zellen gezielter zu steuern. Dies stellt ein Team aus Forschenden aus Greifswald und Hamburg in einer Publikation in der Fachzeitschrift „Advanced Biosystems“ vor.

Eine der zentralen Fragen der Lebenswissenschaften ist, die Funktionsweise des Gehirns zu verstehen. Komplexe Abläufe im Gehirn ermöglichen uns, schnell Muster...

Im Focus: Was geschieht im Körper von ALS-Patienten?

Wissenschaftler der TU Dresden finden Wege, um das Absterben von Nervenzellen zu verringern und erforschen Therapieansätze zur Behandlung von ALS

Die Amyotrophe Lateralsklerose (ALS) ist eine unheilbare Erkrankung des zentralen Nervensystems. Nicht selten verläuft ALS nach der Diagnose innerhalb...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Künstliche Intelligenz: Lernen von der Natur

17.04.2019 | Veranstaltungen

Mobilität im Umbruch – Conference on Future Automotive Technology, 7.-8. Mai 2019, Fürstenfeldbruck

17.04.2019 | Veranstaltungen

Augmented Reality und Softwareentwicklung: 33. Industrie-Tag InformationsTechnologie (IT)²

17.04.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Irdischer Schutz für außerirdisches Metall

18.04.2019 | Verfahrenstechnologie

Erster astrophysikalischer Nachweis des Heliumhydrid-Ions

18.04.2019 | Physik Astronomie

Radioteleskop LOFAR blickt tief in den Blitz

18.04.2019 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics