Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Faszination von Schwärmen und Magnetschlangen

06.10.2008
Um das kollektive Verhalten von Schwärmen, schwimmenden Schlangen aus magnetischen Teilchen and deren Anwendung als Mikropumpen ging es jetzt bei der 3. Bayreuther Lorenz Kramer-Gedächtnisvorlesung mit dem Biophysiker und Materialforscher Prof. Igor Aronson vom Argonne National Laboratory (USA).

Ob Zebras, Vögel, Fische oder Mikroorganismen: Schließen sie sich in großen Schwärmen zusammen, so bilden sie faszinierende Bewegungsmuster. Diese zeigen überraschende Ähnlichkeiten mit Bewegungsformen von Teilchen, die einfachen physikalischen Gesetzen folgen.

Drei Prinzipien spielen dabei eine Hauptrolle, welche ebenso einfach wie allgemeingültig sind: Bleib stets bei der Gruppe, vermeide Zusammenstöße (ein Platz kann eh nur von einem Teilchen eingenommen werden), und beweg dich in dieselbe Richtung wie deine Nachbarn, wie Prof. Aronson mit Beispielen erläuterte.

Menschen ahmen nach, werden von Nachbarn beeinflusst und folgen Trends in der Mode oder auf Finanzmärkten. Dieses schwarmähnliche Verhalten weckt ebenfalls die forschende Neugier von Physikern. Bei näherer Betrachtung entdecken Wissenschaftler allerdings, dass jede Schwarmsorte oder jedes System mit Ordnungssinn in der Natur zusätzlichen eigenen Regeln folgt.

Die elementaren Prinzipien stecken in unterschiedlichen Variationen hinter vielen geordneten Bewegungen in der Natur. Weitere Beispiele sind auch die Bildung von Schäfchenwolken, von Wirbeln und Walzen in Flüssen, aber auch bei Magmaströmen im Erdinneren. Der Ordnungssinn in der Natur fasziniert aus vielerlei Gründen die Naturforscher und ist auch Thema des Forschungsschwerpunktes "Nichlineare Dynamik" an der Universität Bayreuth.
Der Ordnungssinn ist in jedem spezifischen System etwas anders ausgeprägt. Prof. Aronson erläuterte am Beispiel faszinierender und schöner Spiralenmuster, die in so unterschiedlichen Systemen, wie bei Schleimpilzen, bei chemischen Reaktionen oder bei Erregungswellen auf einem Herz auftreten, aber dabei doch ähnlichen Gesetzmäßigkeiten folgen.

Mit einem Lifeexperiment führte Prof. Aronson das Schwarmverhalten magnetischer Teilchen vor. Er zeigte, wie in Wasser gelöste Mikroteilchen aus Nickel auf ein Magnetfeld reagieren, wobei das Magnetfeld mit einer Frequenz von 30 bis 100 Hertz seine Richtung ändert. Sind die Teilchen bei Abwesenheit des Magnetfeldes auf möglichst großen Abstand bedacht, so ordnen sie sich im periodischen Magnetfeld zu einem schlangenförmigen Schwarm. Die Arbeitsgruppe war bei der Entdeckung dieses Selbstorganisationsphänomens ziemlich überrascht.

Bei genauerer Betrachtung besteht diese magnetische Schlange aus vielen kleinen Stabmagneten, welche sich im Magnetfeld durch Aneinanderreihung aus vielen kleinen Teilchen formen. Faszinierend an diesen Magnetschlangen ist auch deren Schwimmverhalten, was denen von Mikroorganismen ähnlich ist. Sie verhalten sich sonst in mehreren Aspekten wie Mikroorganismen, in dem sie beispielsweise Jagd auf andere Teilchen machen.

Magnetschlangen können in einer Sekunde mehr als das fünffache Ihrer eigenen Länge zurücklegen. Der mehrfache Olympiasieger Michael Phleps würde bei dieser Schwimmeffizenz vor Neid erblassen, so Prof. Aronson.

Prof. Aronson war mit seiner Arbeitsgruppe nicht auf der Suche nach Magnetschlangen. Sie wollten die physikalischen Gesetzmäßigkeiten erforschen, nach denen die im Wasser gelösten Magnetteilchen im periodischen Magnetfeld miteinander wechselwirken. Aber Entdeckungen erfolgen selten nach einem vorgefassten Plan. Sie sind das Produkt systematischen und neugierigen Forschens, so Prof. W. Zimmermann. Diese Überraschungseffekte sind Teil der Faszination von Forschung, die unsere Diplomanden und Doktoranden in unseren Labors miterleben können und als Erfahrung ins Berufsleben mitnehmen.

Mit diesen schlangenförmigen Schwärmen aus magnetischen Teilchen lassen sich nun elementare Prinzipien von Schwarmverhalten systematischer untersuchen. denn diese Teilchenschwärme sind im Gegensatz zu Fisch-, Vogel oder Bakterienschwärmen im Labor kontrollierbar. Mit ihnen kann man auch Langzeitexperimente durchführen, denn es gibt bei diesen Teilchenschwärmen kein Futterproblem, können diese Magnetteilchen doch fast beliebig lange durch ein periodisches Magnetfeld angetrieben werden.

Schafft man es, Magnetschlagen während ihrer Schwimmbewegung festzuhalten, so agieren sie wie kleine Mikropumpen auf die umgebende Flüssigkeit. Wie sich diese inzwischen patentierten Eigenschaften von Magnetschlagen in der Biotechnologie einsetzen lassen und wie man aus geordneten magnetischen Teilchen in Zukunft neue Speichermedien macht, wird viele Forscher weiter beschäftigen.

Jürgen Abel | idw
Weitere Informationen:
http://www.uni-bayreuth.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Superscharfe Bilder von der neuen Adaptiven Optik des VLT
18.07.2018 | ESO Science Outreach Network - Haus der Astronomie

nachricht Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung
17.07.2018 | Österreichische Akademie der Wissenschaften

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superscharfe Bilder von der neuen Adaptiven Optik des VLT

Das Very Large Telescope (VLT) der ESO hat das erste Licht mit einem neuen Modus Adaptiver Optik erreicht, die als Lasertomografie bezeichnet wird – und hat in diesem Rahmen bemerkenswert scharfe Testbilder vom Planeten Neptun, von Sternhaufen und anderen Objekten aufgenommen. Das bahnbrechende MUSE-Instrument kann ab sofort im sogenannten Narrow-Field-Modus mit dem adaptiven Optikmodul GALACSI diese neue Technik nutzen, um Turbulenzen in verschiedenen Höhen in der Erdatmosphäre zu korrigieren. Damit ist jetzt möglich, Bilder vom Erdboden im sichtbaren Licht aufzunehmen, die schärfer sind als die des NASA/ESA Hubble-Weltraumteleskops. Die Kombination aus exquisiter Bildschärfe und den spektroskopischen Fähigkeiten von MUSE wird es den Astronomen ermöglichen, die Eigenschaften astronomischer Objekte viel detaillierter als bisher zu untersuchen.

Das MUSE-Instrument (kurz für Multi Unit Spectroscopic Explorer) am Very Large Telescope (VLT) der ESO arbeitet mit einer adaptiven Optikeinheit namens GALACSI. Dabei kommt auch die Laser Guide Stars Facility, kurz ...

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Im Focus: Was passiert, wenn wir das Atomgitter eines Magneten plötzlich aufheizen?

„Wir haben jetzt ein klares Bild davon, wie das heiße Atomgitter und die kalten magnetischen Spins eines ferrimagnetischen Nichtleiters miteinander ins Gleichgewicht gelangen“, sagt Ilie Radu, Wissenschaftler am Max-Born-Institut in Berlin. Das internationale Forscherteam fand heraus, dass eine Energieübertragung sehr schnell stattfindet und zu einem neuartigen Zustand der Materie führt, in dem die Spins zwar heiß sind, aber noch nicht ihr gesamtes magnetisches Moment verringert haben. Dieser „Spinüberdruck“ wird durch wesentlich langsamere Prozesse abgebaut, die eine Abgabe von Drehimpuls an das Gitter ermöglichen. Die Forschungsergebnisse sind jetzt in "Science Advances" erschienen.

Magnete faszinieren die Menschheit bereits seit mehreren tausend Jahren und sind im Zeitalter der digitalen Datenspeicherung von großer praktischer Bedeutung....

Im Focus: Erste Beweise für Quelle extragalaktischer Teilchen

Zum ersten Mal ist es gelungen, die kosmische Herkunft höchstenergetischer Neutrinos zu bestimmen. Eine Forschungsgruppe um IceCube-Wissenschaftlerin Elisa Resconi, Sprecherin des Sonderforschungsbereichs SFB1258 an der Technischen Universität München (TUM), liefert ein wichtiges Indiz in der Beweiskette, dass die vom Neutrino-Teleskop IceCube am Südpol detektierten Teilchen mit hoher Wahrscheinlichkeit von einer Galaxie in vier Milliarden Lichtjahren Entfernung stammen.

Um andere Ursprünge mit Gewissheit auszuschließen, untersuchte das Team um die Neutrino-Physikerin Elisa Resconi von der TU München und den Astronom und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Innovation – the name of the game

18.07.2018 | Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

Interdisziplinäre Konferenz: Diabetesforscher und Bioingenieure diskutieren Forschungskonzepte

13.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vernetzte Beleuchtung: Weg mit dem blinden Fleck

18.07.2018 | Energie und Elektrotechnik

BIAS erhält Bremens größten 3D-Drucker für metallische Luffahrtkomponenten

18.07.2018 | Verfahrenstechnologie

Verminderte Hirnleistung bei schwachem Herz

18.07.2018 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics