Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Faser mit Filtereffekt

27.07.2012
Eine einfache Verdrehung um ihre Längsachse verwandelt spezielle Lichtleiter in Filter

Forscher des Max-Planck-Instituts für die Physik des Lichts in Erlangen haben diesen Effekt bei photonischen Kristallfasern detailliert gemessen und erstmals auch theoretisch erklärt. Ihre Forschungsergebnisse ermöglichen neue Anwendungen in der optischen Nachrichtenübertragung sowie beim Bau von Lasern, Sensoren und Verstärkern für Licht.


Aufbau einer photonischen Kristallfaser (PCF).
© Wong et al., Science 2012,
doi: 10.1126/science.12

Glasfasern dienen meist zum Transport von Licht über große Strecken – zum Beispiel für die schnelle Datenübertragung im Internet. Photonische Kristallfasern (PCF, photonic crystal fiber) sind eine neuartige Variante solcher Lichtwellenleiter, die derzeit vor allem in der Grundlagenforschung eingesetzt werden und deren Querschnitt ein wenig an Bienenwaben erinnert: Die runde Faser ist von winzigen hohlen Röhren durchzogen, die ihren Kern umgeben. Sie sorgen dafür, dass das Licht sich nur längs des Kerns bewegt und mit nur geringen Verlusten transportiert werden kann.

Das Übertragungsverhalten der photonischen Kristallfasern ändert sich aber deutlich, wenn man sie um ihre Längsachse verdreht: Bestimmte Wellenlängen werden dann wesentlich schlechter übertragen – aus dem Lichtleiter ist eine Spirale geworden, die wie ein Filter wirkt. Dieses Verhalten lässt sich sehr einfach über die Verdrehung steuern: Nimmt sie zu, verschieben sich die Einbrüche bei der Lichtübertragung hin zu größeren Wellenlängen.

Diesen Effekt hat das Erlanger Team um Philip Russell im Detail studiert. Dazu haben die Wissenschaftler das eine Ende einer PCF fest eingespannt, während sich das andere Ende mit einem Motor präzise um seine Längsachse verdrehen ließ. Ein Kohlendioxid-Laser bestrahlte während der Experimente die Faser und sorgte dafür, dass das Glasmaterial ausreichend flexibel war. Als Lichtquelle setzten die Forscher eine „Superkontinuumquelle“ ein, die über einen weiten Bereich von Wellenlängen nahezu gleichmäßig Licht abgeben kann. Die Übertragung dieses Lichts durch die photonische Kristallfaser wurde mit einem optischen Spektrumanalysator gemessen – er zeigte an, welche Wellenlängen besonders stark unterdrückt wurden.

Im Experiment brach die Übertragung im Wellenlängenbereich von 400 bis 1000 Nanometern an vier Stellen deutlich ein, die sich erwartungsgemäß bei stärkerer Verdrehung der PCF zu größeren Wellenlängen verschoben. Zudem stellten die Wissenschaftler eine sehr gute Übereinstimmung mit ihren Simulationen fest: „Frühere Studien haben die Filterwirkung mit einer Art Gittereffekt erklärt“, sagt Philip Russell. „Dann müssten die Wellenlängen der Übertragungsminima aber mit der Länge der Windungen zunehmen. Unsere Messungen und Simulationen zeigen aber, dass es genau umgekehrt sein muss – die früheren Erklärungsversuche waren also falsch.“

Russell erklärt den Filter-Effekt mit einer Analogie aus dem 19. Jahrhundert: 1878 hatte der englische Physiker John William Strutt (Lord Rayleigh) in der kuppelförmigen „Flüstergalerie“ der Londoner St. Pauls-Kathedrale beobachtet, dass manche Frequenzen besonders gut übertragen werden. Solche Resonanzen gibt es auch in der Optik – wenn beispielsweise Licht in kleinen Glaskugeln hin und her läuft und sich bei bestimmten Frequenzen stark aufschaukelt.

Etwas Vergleichbares widerfährt den ausgefilterten Wellenlängen in der photonischen Kristallfaser: Sie bilden ebenfalls Resonanzen, und ihre Energie verlässt seitlich die Faser statt geradeaus zu fließen – darum kommt nur noch sehr wenig davon am anderen Ende an. „Mit einer empfindlichen Kamera könnte man sehen, dass die Seite der Faser in den Farben leuchtet, die besonders stark unterdrückt werden“, erklärt Russell.

Der Wissenschaftler sieht interessante technische Anwendungen des Effektes: „Besonders attraktiv daran ist, dass wir die photonischen Kristallfasern noch nach ihrer Produktion fast beliebig verdrehen können. So lassen sich auf höchst flexible Weise Filter für bestimmte Wellenlängen herstellen.“ Solche Komponenten spielen in vielen Bereichen eine wichtige Rolle – bei der optischen Datenübertrag ebenso wie für Sensoren, Faserlaser und Verstärker für Licht. Zudem lässt sich die Verdrehung längs der Faser variieren, wodurch sich ganz unterschiedliche Filter realisieren lassen. Und schließlich ist es dadurch möglich, die linearen und nichtlinearen Leitungseigenschaften der Fasern zu verändern und damit zwei für die Erzeugung eines Superkontinuums wichtige Parameter zu beeinflussen.

Ansprechpartner

Dr. Sabine König
Max-Planck-Institut für die Physik des Lichts
Telefon: +49 9131 6877-500
Fax: +49 9131 6877-199
Email: sabine.koenig@­mpl.mpg.de
Originalveröffentlichung
Excitation of Orbital Angular Momentum Resonances in Helically Twisted Photonic Crystal Fiber
G. K. L. Wong, M. S. Kang, H. W. Lee, F. Biancalana, C. Conti, T. Weiss, P. St. J. Russell
Science 27 July 2012: Vol. 337 no. 6093 pp. 446-449,
DOI: 10.1126/science.1223824

Dr. Sabine König | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/5925582/filter_photonische-kristallfasern

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Magnetische Sensoren ermöglichen richtungsabhängige Temperaturmessung
19.10.2018 | Universität Greifswald

nachricht Mission BepiColombo: Jenaer Sensor hilft, Geheimnisse des Merkur zu entschlüsseln
19.10.2018 | Leibniz-Institut für Photonische Technologien e. V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Auf dem Weg zu maßgeschneiderten Naturstoffen

Biotechnologen entschlüsseln Struktur und Funktion von Docking Domänen bei der Biosynthese von Peptid-Wirkstoffen

Mikroorganismen bauen Naturstoffe oft wie am Fließband zusammen. Dabei spielen bestimmte Enzyme, die nicht-ribosomalen Peptid Synthetasen (NRPS), eine...

Im Focus: Größter Galaxien-Proto-Superhaufen entdeckt

Astronomen enttarnen mit dem ESO Very Large Telescope einen kosmischen Titanen, der im frühen Universum lauert

Ein Team von Astronomen unter der Leitung von Olga Cucciati vom Istituto Nazionale di Astrofisica (INAF) Bologna hat mit dem VIMOS-Instrument am Very Large...

Im Focus: Auf Wiedersehen, Silizium? Auf dem Weg zu neuen Materalien für die Elektronik

Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz haben zusammen mit Wissenschaftlern aus Dresden, Leipzig, Sofia (Bulgarien) und Madrid (Spanien) ein neues, metall-organisches Material entwickelt, welches ähnliche Eigenschaften wie kristallines Silizium aufweist. Das mit einfachen Mitteln bei Raumtemperatur herstellbare Material könnte in Zukunft als Ersatz für konventionelle nicht-organische Materialien dienen, die in der Optoelektronik genutzt werden.

Bei der Herstellung von elektronischen Komponenten wie Solarzellen, LEDs oder Computerchips wird heutzutage vorrangig Silizium eingesetzt. Für diese...

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Blauer Phosphor – jetzt erstmals vermessen und kartiert

Die Existenz von „Blauem“ Phosphor war bis vor kurzem reine Theorie: Nun konnte ein HZB-Team erstmals Proben aus blauem Phosphor an BESSY II untersuchen und über ihre elektronische Bandstruktur bestätigen, dass es sich dabei tatsächlich um diese exotische Phosphor-Modifikation handelt. Blauer Phosphor ist ein interessanter Kandidat für neue optoelektronische Bauelemente.

Das Element Phosphor tritt in vielerlei Gestalt auf und wechselt mit jeder neuen Modifikation auch den Katalog seiner Eigenschaften. Bisher bekannt waren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Natürlich intelligent

19.10.2018 | Veranstaltungen

Rettungsdienst und Feuerwehr - Beschaffung von Rettungsdienstfahrzeugen, -Geräten und -Material

18.10.2018 | Veranstaltungen

11. Jenaer Lasertagung

16.10.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Ultraleichte und belastbare HighEnd-Kunststoffe ermöglichen den energieeffizienten Verkehr

19.10.2018 | Materialwissenschaften

IMMUNOQUANT: Bessere Krebstherapien als Ziel

19.10.2018 | Biowissenschaften Chemie

Raum für Bildung: Physik völlig schwerelos

19.10.2018 | Bildung Wissenschaft

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics