Extremereignisse im Gehirn

Chaotischer Sattel, der das Verhalten des in Bonn und Oldenburg entwickelten Modells beschreibt. Man kann sich ihn vereinfacht als gebogenen Pferdesattel vorstellen, auf dem eine Kugel entlangrollt. (c) Grafik: AG Neurophysik/Uniklinik für Epileptologie Bonn

Über den Computer-Bildschirm ziehen unregelmäßige feuerrote Ringe. Sie vergrößern sich, verschmelzen miteinander, lösen sich auf, bilden Nachkommen – ein stetiger Kreislauf aus Entstehen und Vergehen. Doch plötzlich wird der Schirm dunkel; die Ringe sind verschwunden.

Ein paar Sekunden lang tut sich nichts. Dann beginnt die dunkle Fläche zu pulsieren. Sie ändert rhythmisch ihre Farbe, kaum wahrnehmbar zunächst, doch dann immer deutlicher. Kurz darauf ein zweiter Wechsel: Die gesamte Fläche blitzt plötzlich rot auf. Schließlich erscheinen die Ringe wieder; das Extremereignis ist vorbei.

So ähnlich könnte es im Gehirn aussehen, wenn sich eine Migräne-Attacke anbahnt oder ein epileptischer Anfall entsteht: Plötzlich geraten Milliarden von Neuronen zur selben Zeit in einen Ausnahmezustand. Die Regeln, denen sie normalerweise gehorchen, scheinen mit einem Mal außer Kraft gesetzt.

Die Software, die in dem Büro der Klinik für Epileptologie am Bonner Universitätsklinikum ihre Ergebnisse auf den Computerschirm malt, zeigt ein ganz ähnliches Verhalten: Scheinbar aus dem Nichts heraus, in völlig unvorhersagbaren Abständen, wechselt das zugrunde liegende Modell seine Dynamik. Das Erstaunliche daran: Es gehorcht eigentlich einfachen Regeln, die dennoch so etwas wie Zufall erzeugen.

Small-World-Effekte

Das Modell ist ein Geflecht von vielen tausend Einzelelementen, den Knoten. Diese sind miteinander vernetzt – sie können also miteinander kommunizieren und einander beeinflussen. Sie sprechen dabei nicht nur mit ihren Nachbarn, sondern auch mit einigen weit abgelegenen Knoten. Wissenschaftler sprechen von einem „Small-World“-Netzwerk. Ganz ähnlich kommunizieren auch die Nervenzellen im Gehirn miteinander.

Obwohl die Kommunikationsregeln genau festgelegt sind, zeigen derartige Netzwerke ein sehr komplexes Verhalten. Das liegt einerseits an der Vielzahl der Knoten, andererseits aber auch an der Verdrahtung dieser Knoten untereinander. „Wir konnten nun zeigen, dass sich das Verhalten derartiger Netzwerke spontan ändern kann“, erklärt Gerrit Ansmann, Erstautor der Arbeit und Doktorand in der Arbeitsgruppe Neurophysik. „Diese Wechsel erfolgen aber nur unter bestimmten Rahmenbedingungen“, erläutert Prof. Dr. Klaus Lehnertz, Leiter der Arbeitsgruppe. „Wir hoffen, mit unserem Modell besser verstehen zu können, unter welchen Bedingungen es im Gehirn zu Extremereignissen kommt.“

Der Wechsel zwischen den einzelnen Aktivitätsmustern einschließlich der Entstehung und des Verschwindens von Extremereignissen basiert auf einem grundlegenden Mechanismus, der in ähnlicher Form auch für andere Systeme, wie zum Beispiel bei Erregungsmustern im Herz anwendbar ist. „Diese Allgemeingültigkeit ermöglicht vielfältige Anwendungen dieser Ergebnisse auch in anderen Wissenschaftsgebieten“, unterstreicht Prof. Dr. Ulrike Feudel, Leiterin der Arbeitsgruppe Theoretische Physik/Komplexe Systeme im Institut für Chemie und Biologie des Meeres der Universität Oldenburg.

Die Arbeit entstand im Rahmen eines Projekts, das von der Volkswagen-Stiftung gefördert wird. Die Wissenschaftler untersuchen darin am Beispiel epileptischer Anfälle und schädlicher Algenblüten, durch welche Mechanismen Extremereignisse entstehen.

Publikation: Gerrit Ansmann, Klaus Lehnertz und Ulrike Feudel: Self-induced switchings between multiple space–time patterns on complex networks of excitable units

Kontakt für die Medien:

Prof. Dr. Klaus Lehnertz
Arbeitsgruppe Neurophysik
Klinik für Epileptologie
Universitätsklinikum Bonn
Tel. 0228/28715864
E-Mail: Klaus.Lehnertz@ukb.uni-bonn.de

Prof. Dr. Ulrike Feudel
Arbeitsgruppe Theoretische Physik/Komplexe Systeme
Institut für Chemie und Biologie des Meeres
Universität Oldenburg
Telefon: 0441/7982790
E-Mail: ulrike.feudel@uni-oldenburg.de

http://arxiv.org/pdf/1602.02177 Publikation online

Media Contact

Johannes Seiler idw - Informationsdienst Wissenschaft

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Ideen für die Zukunft

TU Berlin präsentiert sich vom 22. bis 26. April 2024 mit neun Projekten auf der Hannover Messe 2024. Die HANNOVER MESSE gilt als die Weltleitmesse der Industrie. Ihr diesjähriger Schwerpunkt…

Peptide auf interstellarem Eis

Dass einfache Peptide auf kosmischen Staubkörnern entstehen können, wurde vom Forschungsteam um Dr. Serge Krasnokutski vom Astrophysikalischen Labor des Max-Planck-Instituts für Astronomie an der Universität Jena bereits gezeigt. Bisher ging…

Wasserstoff-Produktion in der heimischen Garage

Forschungsteam der Frankfurt UAS entwickelt Prototyp für Privathaushalte: Förderzusage vom Land Hessen für 2. Projektphase. Wasserstoff als Energieträger der Zukunft ist nicht frei verfügbar, sondern muss aufwendig hergestellt werden. Das…

Partner & Förderer