Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Experiment zu ultra-kaltem Rubidium hebt mit Forschungsrakete vom Boden ab

24.01.2017

Physiker schaffen Grundlagen für präzisen Test des Einstein’schen Äquivalenzprinzips – Erstmals Bose-Einstein-Kondensat im Weltraum erzeugt

Mit ultrakalten Quantengasen im Weltraum wollen Physiker das Gravitationsfeld der Erde vermessen, das Einstein’sche Äquivalenzprinzip einem präzisen Test unterziehen oder auch Gravitationswellen detektieren. Bei einem ersten Flug mit einer Höhenforschungsrakete konnten nun die notwendigen Technologien und experimentellen Schritte, die für solche Messungen erforderlich sind, geprüft werden. Dabei hat die Gruppe erstmals ein Bose-Einstein-Kondensat im Weltraum erzeugt und dessen Eigenschaften untersucht.


Die Nutzlast der Höhenforschungsrakete in der Integrationshalle der European Space and Sounding Rocket Range (Esrange) in Schweden

Foto/©: André Wenzlawski, JGU


Die Nutzlast der Höhenforschungsrakete und alle an der Kampagne beteiligten Personen, darunter Wissenschaftler des Projekts MAIUS-1, Mitarbeiter des Deutschen Zentrums für Luft- und Raumfahrt und Mitarbeiter des Raketenstartplatzes Esrange

Foto/©: Thomas Schleuss, DLR

Dazu war die Forschungsrakete MAIUS-1 am 23. Januar 2017 um 3:30 Uhr mitteleuropäischer Zeit vom schwedischen Weltraumbahnhof Esrange zu einem ca. 15-minütigen Flug gestartet. Der Flug brachte die Nutzlast mit dem Experiment zur Erzeugung von Bose-Einstein-Kondensaten aus Rubidium-Atomen und deren Nutzung für Präzisionsmessungen in bis zu 240 Kilometer Höhe.

In der Schwerelosigkeit können ultrakalte Quantengase als hochpräzise Sensoren für z.B. die Gravitation eingesetzt werden, um zu vermessen, ob Objekte im gleichen Gravitationsfeld tatsächlich wie von den gängigen Theorien vorausgesagt gleich schnell fallen. Die Überprüfung des sogenannten Einstein'schen Äquivalenzprinzips kann in Schwerelosigkeit deutlich genauer erfolgen, als es auf der Erde möglich wäre.

Die Forschergruppe unter Leitung der Leibniz Universität Hannover vertritt auf Mainzer Seite Prof. Dr. Patrick Windpassinger vom Institut für Physik der Johannes Gutenberg-Universität Mainz (JGU).

Während des viertelstündigen Flugs erzeugten die Forscher automatisiert alle zwei bis vier Sekunden ein Bose-Einstein-Kondensat aus Rubidium-Atomen – ein Zustand, bei dem die Atome eine Temperatur besitzen, die nur Bruchteile eines Grades vom absoluten Temperaturnullpunkt entfernt ist und die deshalb besonders gut kontrollierbar sind.

Im Weiteren versetzten die Forscher das Kondensat mit Laserpulsen in einen sogenannten quantenmechanischen Überlagerungszustand. „Das bedeutet, dass sich die Atome gleichzeitig an zwei Orten befinden“, erklärt Patrick Windpassinger, einer der Projektleiter des bundesweiten Forschungsverbundes. Mit Hilfe dieses Zustandes lassen sich die auf die Atome einwirkenden Kräfte sehr präzise ermitteln.

Experimente zur Schwerkraft funktionieren auch auf der Erde, zum Beispiel mit Messungen in Falltürmen. Allerdings sind die möglichen Beobachtungszeiten in der Schwerelosigkeit sehr viel länger und die Messungen damit genauer.

Das Forschungsprojekt ist das Ergebnis von mehr als zehn Jahren Arbeit: „Es ist eines der technisch aufwendigsten Experimente, das je auf einer Rakete geflogen ist“, sagt Windpassinger. „Das Experiment musste kompakt und robust genug sein, um den auftretenden Vibrationen während des Starts zu widerstehen, gleichzeitig aber klein und leicht genug, damit es auf der Rakete Platz findet.“

Mainzer Physiker steuern Softwarealgorithmus für Lasersystem bei

Speziell für die Rakete MAIUS-1 entwickelten die Forscher in Mainz einen besonderen Softwarealgorithmus, der half, das Lasersystem des Experiments korrekt anzusteuern. Aber auch das Lasersystem selbst musste über Jahre hinweg aufwendig entwickelt, getestet und gebaut werden. Diesen Teil übernahm eine Gruppe der Humboldt-Universität zu Berlin und des Ferdinand-Braun-Instituts, Leibniz-Institut für Höchstfrequenztechnik (FBH) in Berlin um Prof. Dr. Achim Peters mit miniaturisierten Diodenlasern. Die Wissenschaftler der JGU entwickelten das Strahlaufteilungs- und Manipulationssystem in enger Zusammenarbeit mit der Gruppe um Prof. Dr. Klaus Sengstock von der Universität Hamburg. Das System basiert auf der speziellen Glaskeramik Zerodur der Schott AG, Mainz, und ist gegenüber Temperaturänderungen sehr stabil.

Nach der Entwicklung von Hard- und Software hängt die Durchführung noch von verschiedenen Unsicherheitsfaktoren ab. „Wenn man Pech hat, verschiebt sich der Raketenstart immer wieder um Tage oder sogar Monate – weil ein technisches Problem auftritt, das Wetter schlecht ist oder weil sich Rentierherden im Landebereich befinden“, so André Wenzlawski, wissenschaftlicher Mitarbeiter aus der Gruppe um Professor Windpassinger und für die Johannes Gutenberg-Universität Mainz beim Start in Schweden dabei. „Deshalb sind wir sehr glücklich, dass es nun geklappt hat.“ Für abschließende Erklärungen oder Ergebnisse ist es allerdings noch zu früh: Für die nächsten Jahre sind zwei weitere Raketenmissionen sowie Experimente auf der Internationalen Raumstation ISS geplant.

Die Höhenforschungsraketenmission MAIUS-1 wurde in einem Verbundprojekt zwischen der Leibniz Universität Hannover, der Universität Bremen, der Johannes Gutenberg-Universität Mainz, der Universität Hamburg, der HU Berlin, dem FBH Berlin, der TU Darmstadt, der Universität Ulm und dem Deutschen Zentrum für Luft- und Raumfahrt (DLR) durchgeführt. Die Finanzierung des Projektes erfolgt durch das Raumfahrtmanagement des DLR mit Mitteln des Bundesministeriums für Wirtschaft und Energie aufgrund eines Beschlusses des Deutschen Bundestags.

Fotos:
http://www.uni-mainz.de/bilder_presse/08_physik_quantum_maius-I_01.jpg
Die Nutzlast der Höhenforschungsrakete in der Integrationshalle der European Space and Sounding Rocket Range (Esrange) in Schweden
Foto/©: André Wenzlawski, JGU

http://www.uni-mainz.de/bilder_presse/08_physik_quantum_maius-I_02.jpg
Die Nutzlast der Höhenforschungsrakete und alle an der Kampagne beteiligten Personen, darunter Wissenschaftler des Projekts MAIUS-1, Mitarbeiter des Deutschen Zentrums für Luft- und Raumfahrt und Mitarbeiter des Raketenstartplatzes Esrange
Foto/©: Thomas Schleuss, DLR

Weitere Informationen:
Dr. André Wenzlawski
Arbeitsgruppe Quanten-, Atom- und Neutronenphysik (QUANTUM)
Institut für Physik
Johannes Gutenberg-Universität Mainz
55099 Mainz
Tel. +49 6131 39-22876
Fax +49 6131 39-25179
E-Mail: awenzlaw@uni-mainz.de
https://www.qoqi.physik.uni-mainz.de/

Weiterführende Links:
http://www.phmi.uni-mainz.de/7942.php (QOQI-Projekt „Atominterferometrie mit Quantengasmischungen unter Schwerelosigkeit“)
https://www.uni-mainz.de/presse/74252.php (Pressemitteilung vom 25.01.2016 „Von Mainzer Wissenschaftlern mitentwickeltes Lasersystem besteht Test im Weltraum“)
http://www.dlr.de/dlr/desktopdefault.aspx/tabid-10081/151_read-20337 (Pressemitteilung des DLR zur MAIUS-Mission)

Petra Giegerich | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht VLT macht den präzisesten Test von Einsteins Allgemeiner Relativitätstheorie außerhalb der Milchstraße
22.06.2018 | ESO Science Outreach Network - Haus der Astronomie

nachricht Neue Phänomene im magnetischen Nanokosmos
22.06.2018 | Max-Planck-Institut für Intelligente Systeme

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics