Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Experiment im All soll Äquivalenzprinzip mit bisher unerreichter Genauigkeit testen

09.05.2016

Französische Forscher stellen das Fallgesetz auf den Prüfstand − die PTB liefert dazu hochpräzise Testmassen

Haben sich Galilei, Newton und Einstein getäuscht? Zumindest ein kleinwenig? Dank ihnen wissen wir heute, dass schwere und träge Masse gleich sind. Im Vakuum fallen daher alle Gegenstände gleich schnell zu Boden, egal wie schwer sie sind. Diese 400 Jahre alte Entdeckung hält bisher jeder Überprüfung stand.


Mithilfe zweier in der PTB gefertigter Zylinder soll an Bord eines Satelliten überprüft werden, ob sich schwere und träge Masse unterscheiden.

PTB

Wissenschaftler bestätigen das sogenannte Äquivalenzprinzip mit einer Genauigkeit von 10-13, also bis auf ein Zehnbillionstel genau. Doch moderne physikalische Theorien, wie die String-Theorie, gehen davon aus, dass ganz weit hinter dem Komma der Beweis dafür warten könnte, dass sich träge und schwere Masse unterscheiden.

Französische Forscher wollen das Prinzip nun erneut auf die Probe stellen – mit tatkräftiger Unterstützung durch den Fachbereich „Wissenschaftlicher Gerätebau“ der Physikalisch-Technischen Bundesanstalt (PTB) in Braunschweig. Dort entstanden zwei mikrometergenau hergestellte Hohlzylinderpaare, die seit dem 25. April 2016 im Rahmen des MICROSCOPE-Projektes in einem Satelliten um die Erde kreisen. Das Fallgesetz soll damit mit bisher unerreichter Genauigkeit getestet werden.

Hält man einen Gegenstand in der Hand, spürt man, wie dieser nach unten drückt. Die Erdanziehungskraft zieht ihn zum Boden. Öffnet man die Hand, fällt er – dafür sorgt die sogenannte schwere Masse. Würden wir gemeinsam mit dem Gegenstand fallen, würden wir die Schwerkraft nicht mehr spüren. Dabei wirkt sie immer noch. Allerdings wird sie durch eine entgegengesetzt wirkende Kraft aufgehoben: die Trägheitskraft. Diese widersetzt sich der Beschleunigung. Warum sich schwere und träge Masse gegenseitig genau aufheben, ist noch immer ein Rätsel.

Einige Forscher glauben daher, dass das Fallgesetz nicht stimmen kann. Die String-Theorie sagt beim Äquivalenzprinzip eine Unsicherheit im Bereich von 10-14 bis 10-17 voraus. Durch das MICROSCOPE-Projekt könnte die Physik in diese Bereiche vorstoßen. Es soll eine Messgenauigkeit von bis zu 10-15 ermöglichen. Das wäre auf der Erde nicht messbar.

Denn dort lässt sich der freie Fall im luftleeren Raum nicht lange genug simulieren. Anders sieht es im Weltraum aus: An Bord eines Satelliten „fallen“ die Zylinder (Testmassen) in den kommenden zwei Jahren auf einer sonnensynchronen Umlaufbahn in etwa 700 Kilometer Höhe um die Erde. Dabei wird sich zeigen, ob eine der Testmassen eine andere Beschleunigung erfährt.

Damit das gelingen kann, müssen die Testobjekte die gleiche Form haben. „Wir haben zwei ineinander gelagerte Zylinder gewählt, da diese den gleichen Schwerpunkt haben“, erklärt Dr. Daniel Hagedorn, Leiter der Arbeitsgruppe für Oberflächentechnologie in der PTB. Beim ersten Zylinderpaar bestehen die Massen aus dem gleichen Material: Platin-Rhodium (PtRh10). Beim zweiten Zylinderpaar besteht der äußere Zylinder aus einer Titan-Legierung (TiAl6V4), einem aus dem Flugzeugbau bekannten Material. Der innere Zylinder besteht wie das erste Zylinderpaar aus Platin-Rhodium.

„Wenn wir einen Unterschied in der Beschleunigung sehen, dann bei dem uneinheitlichen Zylinderpaar“, sagt Hagedorn. Gemessen würde dann die Verschiebung des Schwerpunkts der Zylinder. Das einheitliche Paar dient zur Kontrolle. Sollten beide etwas anzeigen, liegt es an den Instrumenten. Damit das Experiment gelingt, müssen die Testmassen immer gleich im Raum ausgerichtet sein. Für die richtige Bahn und den richtigen Winkel sorgt der Satellit. Elektrostatische Kraftfelder stützen die Zylinder.

Die Zylinder exakt gleich anzufertigen, war die größte Herausforderung für die Braunschweiger Gerätebauer. Mehr als fünf Jahre haben sie daran gemessen und gearbeitet. „Das war ein wahnsinnig komplexer Prozess“, sagt Hagedorn. Um die Oberflächen zu perfektionieren, mussten die Drehgeschwindigkeit, die Menge des Kühlschmiermittels, die Art und Form des Diamanten zum Schneiden, der Verschleiß der Werkzeuge und vieles mehr erst einmal erprobt werden. Denn an die benötigte Genauigkeit von weniger als drei Mikrometer hat sich bisher noch niemand herangetraut.

„Wir waren mutig genug, das zu probieren“, sagt Hagedorn. Mit Erfolg: Bei der Form gelang eine Genauigkeit von etwa einem Mikrometer. Die durchschnittliche Rauheit der Oberfläche liegt im Bereich von wenigen zehn Nanometern.

Finanziert wird dieses Unterfangen zu 90 Prozent von der französischen Raumfahrtagentur CNES. Für die Forschung sind die Einrichtungen ONERA (Office national d’études et de recherches aérospatiales) und OCA (Observatoire de la Côte d’Azur) verantwortlich. Neben der PTB unterstützt auch das Zentrum für Angewandte Raumfahrttechnologie und Mikrogravitation (ZARM) in Bremen das Projekt. Dort wurde getestet, ob die Zylinder für das Experiment in der Schwerelosigkeit geeignet sind.

Das Deutsche Zentrum für Luft- und Raumfahrt beteiligte sich dabei an der Finanzierung. Zwei Jahre werden die Testmassen im Orbit kreisen – und dabei die Erde mehr als 1000 Mal umrunden. Ob die dabei entstehenden Daten das Verständnis von Raum und Zeit durcheinander bringen, bleibt abzuwarten. ms/ptb

Ansprechpartner in der PTB
Dr. Daniel Hagedorn, PTB-Arbeitsgruppenleiter 5.54 Oberflächentechnologie, Telefon: (0531) 592-5540, E-Mail: daniel.hagedorn@ptb.de

Weitere Informationen
• MICROSCOPE-Projekt https://microscope.cnes.fr/en/MICROSCOPE/index.htm
• Pressefotos zum Download http://cnes.photonpro.net/cnes/categories/654

Weitere Informationen:

http://www.ptb.de/cms/presseaktuelles/journalisten/presseinformationen/presseinf...

Michael Schnatz | Physikalisch-Technische Bundesanstalt (PTB)

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neue Anwendungen für Mikrolaser in der Quanten-Nanophotonik
20.07.2018 | Technische Universität Berlin

nachricht Superscharfe Bilder von der neuen Adaptiven Optik des VLT
18.07.2018 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: Rostocker Forscher entwickeln autonom fahrende Kräne

Industriepartner kommen aus sechs Ländern

Autonom fahrende, intelligente Kräne und Hebezeuge – dieser Ingenieurs-Traum könnte in den nächsten drei Jahren zur Wirklichkeit werden. Forscher aus dem...

Im Focus: Superscharfe Bilder von der neuen Adaptiven Optik des VLT

Das Very Large Telescope (VLT) der ESO hat das erste Licht mit einem neuen Modus Adaptiver Optik erreicht, die als Lasertomografie bezeichnet wird – und hat in diesem Rahmen bemerkenswert scharfe Testbilder vom Planeten Neptun, von Sternhaufen und anderen Objekten aufgenommen. Das bahnbrechende MUSE-Instrument kann ab sofort im sogenannten Narrow-Field-Modus mit dem adaptiven Optikmodul GALACSI diese neue Technik nutzen, um Turbulenzen in verschiedenen Höhen in der Erdatmosphäre zu korrigieren. Damit ist jetzt möglich, Bilder vom Erdboden im sichtbaren Licht aufzunehmen, die schärfer sind als die des NASA/ESA Hubble-Weltraumteleskops. Die Kombination aus exquisiter Bildschärfe und den spektroskopischen Fähigkeiten von MUSE wird es den Astronomen ermöglichen, die Eigenschaften astronomischer Objekte viel detaillierter als bisher zu untersuchen.

Das MUSE-Instrument (kurz für Multi Unit Spectroscopic Explorer) am Very Large Telescope (VLT) der ESO arbeitet mit einer adaptiven Optikeinheit namens GALACSI. Dabei kommt auch die Laser Guide Stars Facility, kurz ...

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Stadtklima verbessern, Energiemix optimieren, sauberes Trinkwasser bereitstellen

19.07.2018 | Veranstaltungen

Innovation – the name of the game

18.07.2018 | Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neue Anwendungen für Mikrolaser in der Quanten-Nanophotonik

20.07.2018 | Physik Astronomie

Need for speed: Warum Malaria-Parasiten schneller sind als die menschlichen Abwehrzellen

20.07.2018 | Biowissenschaften Chemie

Die Gene sind nicht schuld

20.07.2018 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics