Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

15.08.2017

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon verschmelzen, wenn man sie genügend konzentriert und abkühlt.


Potential wells The artist's rendering shows how potential wells are created for the light in the microresonator through heating with an external laser beam (green).

© Foto: David Dung/Uni Bonn


The Bonn researchers (from left) Dr. Tobias Damm, Dr. Frank Vewinger, David Dung und Prof. Dr. Martin Weitz.

Foto: Volker Lannert/Uni Bonn

Die einzelnen Teilchen verschmelzen auf eine Weise miteinander, dass sie sich gar nicht mehr voneinander unterscheiden lassen. Wissenschaftler sprechen von einem photonischen Bose-Einstein-Kondensat. Dass normale Atome solche Kondensate bilden, ist schon länger bekannt.

Prof. Dr. Martin Weitz vom Institut für Angewandte Physik der Universität Bonn sorgte im Jahr 2010 in der Fachwelt für Aufsehen, als er erstmals ein Bose-Einstein-Kondensat aus Photonen herstellte.

In seiner aktuellen Studie experimentierte das Team von Prof. Weitz wiederum mit einem solchen Superphoton. In der Versuchsanordnung wurde ein Laserstrahl blitzschnell zwischen zwei Spiegeln hin- und hergeworfen.

Dazwischen befand sich ein Farbstoff, der das Laserlicht soweit herunterkühlte, dass aus den einzelnen Licht-Portionen ein Superphoton entstand. „Die Besonderheit ist, dass wir eine Art optischer Töpfchen in unterschiedlichen Formen gebaut haben, in die das Bose-Einstein-Kondensat hineinfließen konnte“, berichtet Weitz.

Ein Polymer variiert den Lichtweg

Hierfür nutzte das Forscherteam einen Trick: Es mischte dem Farbstoff zwischen den Spiegeln ein Polymer bei, das seinen Brechungsindex in Abhängigkeit von der Temperatur änderte. So änderte sich für das Licht die Wegstrecke zwischen den Spiegeln, so dass bei Aufheizung längere Lichtwellenlängen zwischen die Spiegel passten. Das Ausmaß des Lichtwegs zwischen den Spiegeln ließ sich variieren, indem das Polymer über eine hauchdünne Heizschicht aufgewärmt werden konnte.

„Mit Hilfe unterschiedlicher Temperaturen konnten wir unterschiedliche optische Eindellungen erzeugen“, erläutert Weitz. Dabei verformte sich die Geometrie des Spiegels nur scheinbar, es kam vielmehr an einer bestimmten Stelle zur Änderung des Brechungsindex des Polymers – dies hatte aber die gleiche Wirkung wie eine Hohlform. In dieses scheinbare Töpfchen floss ein Teil des Superphotons hinein. Auf diese Weise konnten die Wissenschaftler mit ihrer Apparatur unterschiedliche, sehr verlustarme, Muster erzeugen, die das photonische Bose-Einstein-Kondensat einfingen.

Vorstufe von Quantenschaltkreisen

Im Detail untersuchte das Forscherteam, gesteuert über die Temperatur des Polymers, die Ausbildung zweier benachbarter Töpfchen. Wenn das Licht in beiden optischen Hohlformen auf einem ähnlichen Energieniveau verharrte, floss das Superphoton von dem einen Töpfchen in das benachbarte.

„Es handelte sich dabei um eine Vorstufe für optische Quantenschaltkreise“, hebt der Physiker der Universität Bonn hervor. „Vielleicht lassen sich mit diesem Versuchsaufbau auch komplexe Anordnungen herstellen, bei denen es im Zusammenspiel mit einer in geeigneten Materialien möglichen Photonenwechselwirkung zu einer Quantenverschränkung kommt.“

Dies wäre wiederum die Voraussetzung für ein neues Verfahren der Quantenkommunikation und Quantencomputer. „Doch das ist noch Zukunftsmusik“, sagt Weitz. Die Erkenntnisse des Forscherteams lassen sich absehbar auch für die Weiterentwicklung von Lasern – zum Beispiel für hochpräzise Schweißarbeiten – nutzen.

Publikation: David Dung, Christian Kurtscheid, Tobias Damm, Julian Schmitt, Frank Vewinger, Martin Weitz & Jan Klärs: Variable Potentials for Thermalized Light and Coupled Condensates, Nature Photonics, DOI: 10.1038/nphoton.2017.139

Kontakt für die Medien:

David Dung
Institut für Angewandte Physik
Universität Bonn
Tel. 0228/733453 oder 733455
E-Mail: dung@iap.uni-bonn.de

Prof. Dr. Martin Weitz (erreichbar ab 21.08.2017)
Institut für Angewandte Physik
Universität Bonn
Tel. 0228/734837 oder 734836
E-Mail: weitz@uni-bonn.de

Dr. Andreas Archut | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-bonn.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neuer Blick auf molekulare Prozesse
21.11.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Wie aus Staub Planeten entstehen
21.11.2018 | Technische Universität Braunschweig

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erste Diode für Magnetfelder

Innsbrucker Quantenphysiker haben eine Diode für Magnetfelder konstruiert und im Labor getestet. Das von den Forschungsgruppen um den Theoretiker Oriol Romero-Isart und den Experimentalphysiker Gerhard Kirchmair entwickelte Bauelement könnte eine Reihe neuer Anwendungen ermöglichen.

Elektrische Dioden sind wichtige elektronische Bauteile, die elektrischen Strom in eine Richtung leiten, die Stromleitung in der anderen Richtung aber...

Im Focus: First diode for magnetic fields

Innsbruck quantum physicists have constructed a diode for magnetic fields and then tested it in the laboratory. The device, developed by the research groups led by the theorist Oriol Romero-Isart and the experimental physicist Gerhard Kirchmair, could open up a number of new applications.

Electric diodes are essential electronic components that conduct electricity in one direction but prevent conduction in the opposite one. They are found at the...

Im Focus: Millimeterwellen für die letzte Meile

ETH-Forscher haben einen Modulator entwickelt, mit dem durch Millimeterwellen übertragene Daten direkt in Lichtpulse für Glasfasern umgewandelt werden können. Dadurch könnte die Überbrückung der «letzten Meile» bis zum heimischen Internetanschluss deutlich schneller und billiger werden.

Lichtwellen eigenen sich wegen ihrer hohen Schwingungsfrequenz hervorragend zur schnellen Übertragung von Daten.

Im Focus: Nonstop-Transport von Frachten in Nanomaschinen

Max-Planck-Forscher entdecken die Nanostruktur von molekularen Zügen und den Grund für reibungslosen Transport in den „Antennen der Zelle“

Eine Zelle bewegt sich ständig umher, tastet ihre Umgebung ab und sendet Signale an andere Zellen. Das ist wichtig, damit eine Zelle richtig funktionieren kann.

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Podiumsdiskussion zur 11. Internationalen MES-Tagung in Hannover hochkarätig besetzt

21.11.2018 | Veranstaltungen

Hüftprothese: Minimalinvasiv oder klassisch implantieren? Implantatmodell wichtiger als OP-Methode

21.11.2018 | Veranstaltungen

Personalisierte Implantologie – 32. Kongress der DGI

19.11.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neuer Blick auf molekulare Prozesse

21.11.2018 | Physik Astronomie

Wechsel zu Carbon Infrarot-Strahlern von Heraeus halbiert die Trocknungszeit für Siebdruck auf T-Shirts

21.11.2018 | Energie und Elektrotechnik

Wie aus Staub Planeten entstehen

21.11.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics