Erste Resultate des neuen Alphatrap-Experiments

Abb. 1: Alphatrap: Links der supraleitende Magnet, rechts die darin eingebaute Ionenfalle. Foto: MPIK

Die Quantenelektrodynamik (QED) beschreibt die Wechselwirkung von geladenen Teilchen mit elektromagnetischen Feldern und ist die am besten getestete physikalische Theorie. Sie liefert äußerst exakte Vorhersagen für physikalische Messgrößen und bisher wurde in keiner Messung eine Abweichung davon gezeigt.

Dennoch ist es von fundamentalem Interesse, mögliche Grenzen der Gültigkeit der QED zu finden – dies wäre ein Weg zu neuer Physik. Ein guter Zugang dafür ist ein hochpräziser Test unter extremen Bedingungen, d. h. bei extrem hohen Feldstärken.

Physiker der Abteilung von Klaus Blaum am Heidelberger Max-Planck-Institut für Kernphysik haben hierzu die magnetischen Eigenschaften von hochgeladenen Argon-Ionen in der neuen Ionenfalle Alphatrap mit hoher Präzision vermessen.

Das untersuchte borartige Argon ist dreizehnfach geladen, und hat – wie das Element Bor – fünf Elektronen, aber eine deutlich höhere Kernladung von 18 Elementarladungen (statt 5 für Bor). Das elektrische Feld des Atomkerns, dem das äußerste Elektron ausgesetzt ist, ist dadurch im Vergleich zu Bor etwa um einen Faktor 900 erhöht.

Messgröße ist die Magnetisierung des Elektrons, die durch den so genannten g-Faktor bestimmt wird. Hierzu tragen im betrachteten Beispiel sowohl der innere Drehimpuls (Spin) als auch die Bahnbewegung des Elektrons um den Atomkern (Bahndrehimpuls) bei.

Der g-Faktor als Verhältnis des magnetischen Moments des Elektrons zu seinem Gesamt-Drehimpuls ist ein Maß für die Stärke der magnetischen Wechselwirkung und kann mittels der QED sehr genau berechnet wie auch im Experiment mit vergleichbarer Genauigkeit bestimmt werden. Der Vergleich von Theorie und Experiment stellt daher einen empfindlichen Test der QED für gebundene Elektronen dar.

Für die Messung an einzelnen hochgeladenen Argon-Ionen kam erstmals die doppelte Penning-Ionenfalle Alphatrap zum Einsatz. Die Ionen werden durch ein starkes äußeres Magnetfeld auf eine Kreisbahn (Zyklotronbewegung) um die Fallenachse gezwungen.

Die ringförmigen Elektroden können auf verschiedene elektrische Spannungen gelegt werden und so das Ion an einem Entweichen entlang der Fallenachse hindern wie auch entlang dieser in gewünschter Weise transportieren.

Im Präzisionsfalle genannten Teil wird die Zyklotronfrequenz zerstörungsfrei mit extrem hoher Genauigkeit gemessen. Gleichzeitig werden Mikrowellen eingestrahlt, die bei geeigneter Frequenz den Spin des Elektrons samt seiner Bewegung umklappen kann – stellt man sich das Elektron als einen winzigen Kreisel vor, so stellt sich dieser dabei auf den Kopf.

Diese so-genanten „Spin-Flips“ treten in Resonanz mit der Mikrowellenfrequenz am häufigsten auf. Um solche Quantensprünge nachzuweisen, wird das Ion in die dafür entwickelte Analysfalle transportiert wo man die Ausrichtung des Spins anhand einer präzisen Frequenzmessung feststellen kann. Mit dieser Methode gelang dank der hohen Präzision und Stabilität des gesamten Aufbaus, den g-Faktor auf 9 Stellen genau zu bestimmen.

Zum Vergleich wurde in der Theorie-Abteilung von Christoph Keitel am MPIK und in einer weiteren Gruppe um Dmitry Glazov von der St. Petersburg Universität der g-Faktor für borartiges Argon neu berechnet, wobei neben QED-Beiträgen auch die Wechselwirkung mit den übrigen vier Elektronen und der Rückstoß des Atomkerns Berücksichtigung fanden.

Es wurde eine Genauigkeit von sieben Stellen erreicht und der theoretische Wert stimmt auf diesem Niveau hervorragend mit dem experimentellen Resultat überein. Es handelt sich um einen der präzisesten Tests von QED-Beiträgen von Mehrelektronensystemen in starken Feldern und bereitet den Weg für zukünftige Messungen mit Alphatrap.

Hierzu zählt auch die hochpräzise Bestimmung der von Arnold Sommerfeld eingeführte Feinstrukturkonstante α, welche als fundamentale Naturkonstante in der QED die Stärke der die Stärke der elektrischen und magnetischen Kräfte bestimmt.

Dr. Sven Sturm
MPI für Kernphysik
Tel.: (+49)6221-516-447
E-Mail: sven.sturm(at)mpi-hd.mpg.de

Prof. Dr. Klaus Blaum
MPI für Kernphysik
Tel.: (+49)6221-516-850
E-Mail: klaus.blaum(at)mpi-hd.mpg.de

Dr. Zoltán Harman
MPI für Kernphysik
Tel.: (+49)6221-516-170
E-Mail: harman(at)mpi-hd.mpg.de

Hon.-Prof. Dr. Christoph Keitel
MPI für Kernphysik
Tel.: (+49)6221-516-150
E-Mail: keitel(at)mpi-hd.mpg.de

The g-factor of Boronlike Argon ⁴⁰Ar¹³⁺
I. Arapoglou, A. Egl, M. Höcker, T. Sailer, B. Tu, A. Weigel, R. Wolf, H. Cakir, V. A. Yerokhin, N. S. Oreshkina, V. A. Agababaev, A. V. Volotka, D. V. Zinenko, D. A. Glazov, Z. Harman, C. H. Keitel, S. Sturm, and K. Blaum
Phys. Rev. Lett. 122, 253001 | DOI: 10.1103/PhysRevLett.122.253001

https://doi.org/10.1103/PhysRevLett.122.253001 Originalpublikation

https://www.mpi-hd.mpg.de/blaum/index.de.html Abteilung „Gespeicherte und gekühlte Ionen“ am MPIK

https://www.mpi-hd.mpg.de/keitel/ Abteilung „Theoretische Quantendynamik und Quantenelektrodynamik“ am MPIK (engl.)

Media Contact

Dr. Bernold Feuerstein Max-Planck-Institut für Kernphysik

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer