Erste Ergebnisse des Plasma-Experiments PK-4 veröffentlicht

Kosmonautin Jelena Serowa bei der Installation von PK-4 auf der ISS. Foto: Roscosmos

Die Arbeitsgruppe Plasma- und Raumfahrtphysik der Justus-Liebig-Universität Gießen (JLU) unter der Leitung von Prof. Markus Thoma ist an Experimenten auf der Internationalen Raumstation ISS beteiligt. Erstmals sind jetzt Ergebnisse aus dem Plasmakristall-Experiment 4 (PK-4) in der Fachzeitschrift „Physics of Plasmas“ veröffentlicht worden.

Die Wissenschaftlerinnen und Wissenschaftler unter der Federführung des Deutschen Zentrums für Luft- und Raumfahrt (DLR) haben sogenannte Plasmawellen untersucht, die sich in der Plasmakammer von PK-4 bilden und ausbreiten.

Plasmen sind elektrisch leitende Gase, die Ionen und Elektronen enthalten, wie sie zum Beispiel in Neonröhren zur Beleuchtung benutzt werden oder bei Gewittern in Form von Blitzen zu beobachten sind. Bringt man in solche Plasmen Mikropartikel („Staubteilchen“) ein, so spricht man von einem komplexen oder staubigen Plasma.

Dabei laden sich diese Partikel aufgrund von Elektronenanlagerungen im Plasma stark negativ auf. Aufgrund der elektrostatischen Wechselwirkung zeigen diese Teilchen komplexe Strukturen und ein interessantes dynamisches Verhalten – etwa indem sie sich in kristallförmigen Strukturen anordnen.

Das Verhalten der Teilchen lässt sich unter Zuhilfenahme eines Lasers direkt beobachten, allerdings setzen sich die geladenen Partikel schnell am Boden ab und können nur durch elektrische Felder in der Schwebe gehalten werden, die aber wiederum die Strukturen im Plasma verändern. Hier kommt die Schwerelosigkeit ins Spiel, die es ermöglicht, die Teilchen ohne den störenden Einfluss von Gravitation und elektrischen Feldern zu beobachten.

Die im Auftrag der Europäischen Raumfahrtagentur (ESA) am Max-Planck-Institut für extraterrestrische Physik entwickelte Apparatur PK-4 kam im Oktober 2014 mit einem Progress-Transporter von Baikonur aus zur ISS und wurde dort von russischen Kosmonauten im europäischen Labormodul Columbus installiert.

An der Vorbereitung, Durchführung und Auswertung der Experimente ist die Arbeitsgruppe im I. Physikalischen Institut der JLU maßgeblich beteiligt. Dazu nehmen die Wissenschaftler um Markus Thoma auch an Parabelflügen teil, bei denen Experimente mit einer Kopie der Apparatur auf der ISS unter Schwerelosigkeit getestet werden (vgl. PM202-16 vom 01.11.2016).

Mit Plasmawellen können zum Beispiel Protonen beschleunigt werden. Damit lassen sich sehr kompakte Protonenquellen bauen, die in Zukunft zur Tumortherapie eingesetzt werden sollen. In einem komplexen Plasma lassen sich nun diese Wellen direkt abbilden, sodass man sie im Detail auf dem Niveau der einzelnen Teilchen untersuchen kann, was in reinen Plasmen aus Elektronen und Ionen nicht möglich ist.

Termin

S. Jaiswal et al.: Dust density waves in a dc flowing complex plasma with discharge polarity reversal, Physics of Plasmas 25, 083705 (2018); doi: 10.1063/1.5040417
https://aip.scitation.org/doi/full/10.1063/1.5040417

Prof. Dr. Markus Thoma, AG Plasma- und Raumfahrtphysik
I. Physikalisches Institut der Justus-Liebig-Universität Gießen
Heinrich-Buff-Ring 16, 35392 Gießen
Telefon: 0641 99-33110
Mail: Markus.H.Thoma@exp1.physik.uni-giessen.de

Media Contact

Lisa Dittrich idw - Informationsdienst Wissenschaft

Weitere Informationen:

http://www.uni-giessen.de/

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Bakterien für klimaneutrale Chemikalien der Zukunft

For­schen­de an der ETH Zü­rich ha­ben Bak­te­ri­en im La­bor so her­an­ge­züch­tet, dass sie Me­tha­nol ef­fi­zi­ent ver­wer­ten kön­nen. Jetzt lässt sich der Stoff­wech­sel die­ser Bak­te­ri­en an­zap­fen, um wert­vol­le Pro­duk­te her­zu­stel­len, die…

Batterien: Heute die Materialien von morgen modellieren

Welche Faktoren bestimmen, wie schnell sich eine Batterie laden lässt? Dieser und weiteren Fragen gehen Forschende am Karlsruher Institut für Technologie (KIT) mit computergestützten Simulationen nach. Mikrostrukturmodelle tragen dazu bei,…

Porosität von Sedimentgestein mit Neutronen untersucht

Forschung am FRM II zu geologischen Lagerstätten. Dauerhafte unterirdische Lagerung von CO2 Poren so klein wie Bakterien Porenmessung mit Neutronen auf den Nanometer genau Ob Sedimentgesteine fossile Kohlenwasserstoffe speichern können…

Partner & Förderer