Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erst die Bahn, dann der Spin

27.05.2010
Neuartige Speichermaterialien sollen in Zukunft aus magnetischen Filmen bestehen. Am HZB haben Wissenschaftler erstmals herausgefunden, wie schnell sich magnetische Teilchen steuern lassen.

Christian Stamm und seine Kollegen vom Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) haben in den letzten sechs Jahren ein weltweit einzigartiges Experiment zum so genannten Femtoslicing aufgebaut und publizieren nun erstmals ein Ergebnis, das in Zusammenarbeit mit einer externen Nutzergruppe erzielt wurde.

Im Fachmagazin Nature berichten sie zusammen mit ihren Kollegen aus Strasbourg, wie schnell der Magnetismus eines Materials beeinflusst werden kann. Dabei sehen sie, dass die Bewegung eines Elektrons um den Atomkern - das Orbitalmoment - und der Eigendrehimpuls des Elektrons (Spin) auf unterschiedliche Weise reagieren.

„Nur mit dem Femtoslicing kann man die ultraschnellen Vorgänge sichtbar machen, die zum Phänomen des Magnetismus beitragen“, begründet Christian Stamm den Aufwand, mit dem mehrere HZB-Wissenschaftler das Experiment an der Berliner Synchrotronquelle BESSY II aufgebaut haben. Sie schießen dabei ultrakurze Laserpulse auf die Elektronen, die sich im Speicherring mit nahezu Lichtgeschwindigkeit bewegen.

Die getroffenen Elektronen unterscheiden sich von denen, die nicht mit dem Laserstrahl in Berührung kamen. Das Röntgenlicht, das sie während ihres Umlaufs im Speicherring aussenden – das spezielle Synchrotronlicht – trägt nun ebenfalls die Charakteristik, die das Laserlicht mitbringt.

Mit diesen ultrakurzen Röntgenblitzen wird schließlich die magnetische Probe untersucht. Das besondere an BESSY II: Nur hier steht den Nutzern aus aller Welt so genanntes zirkular polarisiertes Röntgenlicht für Slicing-Experimente zur Verfügung. Für Untersuchungen von Spin und Orbitalmoment, die dem Magnetismus zugrunde liegen, ist dies unbedingt erforderlich.

Die Ergebnisse, die Christian Stamm und seine Kollegen mithilfe der Femtoslicing-Experimente vorstellen, bringen eine fundamentale Erkenntnis zutage: „Wir konnten zeigen, auf welchem Weg und wie schnell die zugeführte Energie im Elektronenspin ankommt“, sagt der Physiker. Letztlich also, wie schnell sich der Magnetismus von außen beeinflussen und schalten lässt.

Für die Spintronik und die Halbleitertechnologie, die Computer zukünftig auf der Basis von „Spin up“ und „Spin down“ als Pendant zu den Kenngrößen „1“ und „0“ bauen wollen, könnte diese Erkenntnis ein weiterer wichtiger Meilenstein sein, denn sie zeigt, wie sich die Spin-Änderung im Detail vollzieht.

„Die Bewegung der Elektronen auf ihrer Kreisbahn ändert sich sehr schnell, wenn Energie zugeführt wird“, erläutert Christian Stamm. Im Gegensatz zur Spin-Reaktion, die verzögert erfolge. Das heißt: „Will man den Elektronenspin ändern, muss zuerst die Orbitalbewegung der Elektronen zerstört werden. Erst dann dreht sich der Spin.“

Dr. Ina Helms | Helmholtz-Zentrum
Weitere Informationen:
http://www.helmholtz-berlin.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Ultraschneller Blick in die Photochemie der Atmosphäre
11.10.2019 | Max-Planck-Institut für Quantenoptik

nachricht Wie entstehen die stärksten Magnete des Universums?
10.10.2019 | Universität Heidelberg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neuer Werkstoff für den Bootsbau

Um die Entwicklung eines Leichtbaukonzepts für Sportboote und Yachten geht es in einem Forschungsprojekt der Technischen Hochschule Mittelhessen. Prof. Dr. Stephan Marzi vom Gießener Institut für Mechanik und Materialforschung arbeitet dabei mit dem Bootsbauer Krake Catamarane aus dem thüringischen Apolda zusammen. Internationale Kooperationspartner sind Prof. Anders Biel von der schwedischen Universität Karlstad und die Firma Lamera aus Göteborg. Den Projektbeitrag der THM fördert das Bundesministerium für Wirtschaft und Energie im Rahmen des Zentralen Innovationsprogramms Mittelstand mit 190.000 Euro.

Im modernen Bootsbau verwenden die Hersteller als Grundmaterial vorwiegend Duroplasten wie zum Beispiel glasfaserverstärkten Kunststoff. Das Material ist...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

Im Focus: Ultraschneller Blick in die Photochemie der Atmosphäre

Physiker des Labors für Attosekundenphysik haben erkundet, was mit Molekülen an den Oberflächen von nanoskopischen Aerosolen passiert, wenn sie unter Lichteinfluss geraten.

Kleinste Phänomene im Nanokosmos bestimmen unser Leben. Vieles, was wir in der Natur beobachten, beginnt als elementare Reaktion von Atomen oder Molekülen auf...

Im Focus: Wie entstehen die stärksten Magnete des Universums?

Wie kommt es, dass manche Neutronensterne zu den stärksten Magneten im Universum werden? Eine mögliche Antwort auf die Frage nach der Entstehung dieser sogenannten Magnetare hat ein deutsch-britisches Team von Astrophysikern gefunden. Die Forscher aus Heidelberg, Garching und Oxford konnten mit umfangreichen Computersimulationen nachvollziehen, wie sich bei der Verschmelzung von zwei Sternen starke Magnetfelder bilden. Explodieren solche Sterne in einer Supernova, könnten daraus Magnetare entstehen.

Wie entstehen die stärksten Magnete des Universums?

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Dezember 2019

14.10.2019 | Veranstaltungen

10. Weltkonferenz der Ecosystem Services Partnership an der Leibniz Universität Hannover

14.10.2019 | Veranstaltungen

Bildung.Regional.Digital: Tagung bietet Rüstzeug für den digitalen Unterricht von heute und morgen

10.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Technologiemodul senkt Ausschussrate von Mikrolinsen auf ein Minimum

14.10.2019 | Informationstechnologie

Diagnostik für alle

14.10.2019 | Biowissenschaften Chemie

Bayreuther Forscher entdecken stabiles hochenergetisches Material

14.10.2019 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics