Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erklärung für rätselhafte Quantenoszillationen gefunden

16.05.2018

Sogenannte Quanten-Vielteilchen-„Scars“ lassen Quantensysteme länger außerhalb des Gleichgewichtszustandes verweilen. Studie wurde in Nature Physics veröffentlicht

Forschern der Harvard Universität und des MIT war es vor kurzem gelungen, eine Rekordzahl von 53 Atomen einzufangen und ihren Quantenzustand einzeln zu steuern, wodurch sie einen so genannten Quantensimulator realisierten. Ihre Experimente mit diesem System, die im Juli 2017 auf einer Konferenz in Triest vorgestellt wurden, zeigten periodische Oszillationen in der Dynamik der wechselwirkenden Atome, die völlig unerwartet waren.


Zehn Atome schwingen zwischen dem Grundzustand (schwarz) und dem angeregten Zustand (weiß) hin und her. Oben: verschiedenen Wahrscheinlichkeiten der individuellen Konfigurationen im Laufe der Zeit.

IST Austria/Maksym Serbyn


Ein Ball springt chaotisch in einem Stadium herum (oben). Befindet er sich in der Nähe eines instabilen Orbits, bleibt er eine Weile in dessen Nähe, fällt dann aber ins Chaos zurück.

IST Austria/Maksym Serbyn

Nun hat ein internationales Forscherteam das Geheimnis dieser bisher unerklärlichen Oszillationen gelöst. Die Forscher, darunter Alexios Michailidis und Maksym Serbyn vom Institute of Science and Technology Austria (IST Austria) sowie ihre Kollegen von der Universität Leeds und der Universität Genf, schlugen eine theoretische Erklärung vor, die das Konzept von Quanten-Vielteilchen -„Scars“ einführt. Sie verändern damit unsere Auffassung der Dynamik, die in Quanten-Vielteilchensystemen möglich ist.

Stellen Sie sich einen Ball vor, der in einem ovalen Stadion herumspringt. Er wird chaotisch durch den verfügbaren Raum springen, und da seine Bewegung zufällig ist, wird er früher oder später jeden Ort im Stadion besucht haben. In all dem Chaos kann jedoch Ordnung herrschen: Trifft der Ball zufällig an der richtigen Stelle und im richtigen Einfallswinkel auf die Wand, kann er in einer periodischen Umlaufbahn landen.

Auf ihr besucht er immer wieder dieselben Stellen und lässt die anderen aus. Solch eine periodische Bahn ist extrem instabil, da bereits die geringste Störung ausreichen kann, um den Ball von seiner Bahn abzulenken und ins Chaos zurückzuschicken.

Dasselbe Prinzip ist auch auf Quantensysteme anwendbar, nur dass anstelle des Balls eine Welle vorliegt, und statt der Bahn eine Wahrscheinlichkeitsfunktion. Klassische periodische Umlaufbahnen können nun bewirken, dass eine Quantenwelle in der Nähe des Orbits konzentriert wird, und das führt in der ansonsten gleichförmigen Wahrscheinlichkeit zu einer charakteristischen Struktur.

Solche Prägungen klassischer Bahnen auf die Wahrscheinlichkeitsfunktion werden “quantum scars”, also „Quantennarben" genannt. Bisher ging man davon aus, dass das Phänomen nur bei einzelnen Quantenteilchen auftritt, da die Komplexität des Systems mit jedem zusätzlichen Teilchen dramatisch ansteigt und periodische Umlaufbahnen dabei immer unwahrscheinlicher werden.

"Im Allgemeinen nahm man an, dass es für Vielteilchensysteme unmöglich sei, Quantennarben zu haben, und als man die Schwingungen zum ersten Mal sah, konnten niemand sie erklären", sagt Maksym Serbyn, Professor am IST Austria und Co-Autor der Studie. "Indem wir das Konzept der Quantennarben auf Quanten-Vielteilchensysteme erweitert haben, konnten wir erklären, warum diese Oszillationen da sind", fügt er hinzu.


In der Studie, die heute in Nature Physics veröffentlicht wurde, erklären die Forscher die experimentelle Beobachtung mit dem Auftreten von Quanten-Vielteilchen-Scars. Sie identifizieren auch den instabilen periodischen Vielteilchen-Orbit, der hinter dem Verhalten steckt: es ist die kohärente Oszillation von Atomen zwischen dem angeregten Zustand und dem Grundzustand.

Man kann man sich die Quanten-Vielteilchen-Scars als einen Teil des Raums vorstellen, der gewissermaßen vom Chaos "abgeschirmt" ist, was zu einer viel langsameren Relaxation, also einer langsameren Rückkehr zum Chaos führt. Mit anderen Worten: Das System braucht länger, um zum Chaos zurückzukehren.

"Wir wissen immer noch nicht, wie häufig Quanten-Vielteilchen-Scars sind, aber wir haben ein Beispiel gefunden, und das ist ein Paradigmenwechsel", sagt Serbyn. Aber es gibt noch viel zu klären. "Wir verstehen noch nicht alle Eigenschaften von Vielkörper-Quanten-Narben, aber es ist uns gelungen, die Daten zu erklären. Wir hoffen, dass eine bessere Kenntnis der Quantennarben eine Möglichkeit bietet, Quantensysteme vor der Relaxation zu schützen."

Originalpublikation:
Weak ergodicity breaking from quantum many-body scars, C. J. Turner, A. A. Michailidis, D. A. Abanin, M. Serbyn & Z. Papić, Nature Physics (2018), doi:10.1038/s41567-018-0137-5
https://www.nature.com/articles/s41567-018-0137-5

Über das IST Austria
Das Institute of Science and Technology (IST Austria) in Klosterneuburg ist ein Forschungsinstitut mit eigenem Promotionsrecht. Das 2009 eröffnete Institut widmet sich der Grundlagenforschung in den Naturwissenschaften, Mathematik und Computerwissenschaften. Das Institut beschäftigt ProfessorInnen nach einem Tenure-Track-Modell und Post-DoktorandInnen sowie PhD StudentInnen in einer internationalen Graduate School. Neben dem Bekenntnis zum Prinzip der Grundlagenforschung, die rein durch wissenschaftliche Neugier getrieben wird, hält das Institut die Rechte an allen resultierenden Entdeckungen und fördert deren Verwertung. Der erste Präsident ist Thomas Henzinger, ein renommierter Computerwissenschaftler und vormals Professor an der University of California in Berkeley, USA, und der EPFL in Lausanne, Schweiz. www.ist.ac.at

Über die University of Leeds
Die University of Leeds ist mit mehr als 33.000 Studenten aus mehr als 150 verschiedenen Ländern eine der größten Hochschuleinrichtungen in Großbritannien. Sie ist ein Mitglied der Russell Group of research-intensive universities.

Dem Research Excellence Framework 2014 zufolge gehört sie zu den zehn besten Universitäten für Forschung und Impact Power in Großbritannien und rangierren unter den Top 100 für akademische Reputation im QS World University Rankings 2018. Darüber hinaus erhielt die Universität eine Goldbewertung von das "Teaching Excellence Framework" der Regierung im Jahr 2017, durch die das "durchweg herausragende" Lehr- und Lernangebot anerkannt wurde. 26 der Wissenschaftler haben National Teaching Fellowships erhalten - mehr als jede andere Institution in England, Nordirland und Wales -, was die Exzellenz der Lehre widerspiegelt. www.leeds.ac.uk

Weitere Informationen:

https://www.nature.com/articles/s41567-018-0137-5 Link zum Paper
https://qdyn.pages.ist.ac.at/ Webseite der Forschungsgruppe um Maksym Serbyn

Dr. Elisabeth Guggenberger | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Superscharfe Bilder von der neuen Adaptiven Optik des VLT
18.07.2018 | ESO Science Outreach Network - Haus der Astronomie

nachricht Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung
17.07.2018 | Österreichische Akademie der Wissenschaften

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superscharfe Bilder von der neuen Adaptiven Optik des VLT

Das Very Large Telescope (VLT) der ESO hat das erste Licht mit einem neuen Modus Adaptiver Optik erreicht, die als Lasertomografie bezeichnet wird – und hat in diesem Rahmen bemerkenswert scharfe Testbilder vom Planeten Neptun, von Sternhaufen und anderen Objekten aufgenommen. Das bahnbrechende MUSE-Instrument kann ab sofort im sogenannten Narrow-Field-Modus mit dem adaptiven Optikmodul GALACSI diese neue Technik nutzen, um Turbulenzen in verschiedenen Höhen in der Erdatmosphäre zu korrigieren. Damit ist jetzt möglich, Bilder vom Erdboden im sichtbaren Licht aufzunehmen, die schärfer sind als die des NASA/ESA Hubble-Weltraumteleskops. Die Kombination aus exquisiter Bildschärfe und den spektroskopischen Fähigkeiten von MUSE wird es den Astronomen ermöglichen, die Eigenschaften astronomischer Objekte viel detaillierter als bisher zu untersuchen.

Das MUSE-Instrument (kurz für Multi Unit Spectroscopic Explorer) am Very Large Telescope (VLT) der ESO arbeitet mit einer adaptiven Optikeinheit namens GALACSI. Dabei kommt auch die Laser Guide Stars Facility, kurz ...

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Im Focus: Was passiert, wenn wir das Atomgitter eines Magneten plötzlich aufheizen?

„Wir haben jetzt ein klares Bild davon, wie das heiße Atomgitter und die kalten magnetischen Spins eines ferrimagnetischen Nichtleiters miteinander ins Gleichgewicht gelangen“, sagt Ilie Radu, Wissenschaftler am Max-Born-Institut in Berlin. Das internationale Forscherteam fand heraus, dass eine Energieübertragung sehr schnell stattfindet und zu einem neuartigen Zustand der Materie führt, in dem die Spins zwar heiß sind, aber noch nicht ihr gesamtes magnetisches Moment verringert haben. Dieser „Spinüberdruck“ wird durch wesentlich langsamere Prozesse abgebaut, die eine Abgabe von Drehimpuls an das Gitter ermöglichen. Die Forschungsergebnisse sind jetzt in "Science Advances" erschienen.

Magnete faszinieren die Menschheit bereits seit mehreren tausend Jahren und sind im Zeitalter der digitalen Datenspeicherung von großer praktischer Bedeutung....

Im Focus: Erste Beweise für Quelle extragalaktischer Teilchen

Zum ersten Mal ist es gelungen, die kosmische Herkunft höchstenergetischer Neutrinos zu bestimmen. Eine Forschungsgruppe um IceCube-Wissenschaftlerin Elisa Resconi, Sprecherin des Sonderforschungsbereichs SFB1258 an der Technischen Universität München (TUM), liefert ein wichtiges Indiz in der Beweiskette, dass die vom Neutrino-Teleskop IceCube am Südpol detektierten Teilchen mit hoher Wahrscheinlichkeit von einer Galaxie in vier Milliarden Lichtjahren Entfernung stammen.

Um andere Ursprünge mit Gewissheit auszuschließen, untersuchte das Team um die Neutrino-Physikerin Elisa Resconi von der TU München und den Astronom und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Innovation – the name of the game

18.07.2018 | Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

Interdisziplinäre Konferenz: Diabetesforscher und Bioingenieure diskutieren Forschungskonzepte

13.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vernetzte Beleuchtung: Weg mit dem blinden Fleck

18.07.2018 | Energie und Elektrotechnik

BIAS erhält Bremens größten 3D-Drucker für metallische Luffahrtkomponenten

18.07.2018 | Verfahrenstechnologie

Verminderte Hirnleistung bei schwachem Herz

18.07.2018 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics