Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erfolgreicher Start in Phase 3 am japanischen Beschleuniger SuperKEKB

14.03.2019

Von deutschen Physikerinnen und Physikern mitentwickelter und -gebauter Belle II-Detektor ist inzwischen vollständig instrumentiert

Am japanischen Teilchenbeschleuniger SuperKEKB ist am 11. März 2019 die mit Spannung erwartete Phase 3 erfolgreich gestartet. Das ausgeklügelte Detektorsystem des Belle II-Experiments ist nun vollständig instrumentiert und wird die Suche nach neuer Physik in der jetzt begonnenen Messkampagne mit Hochdruck vorantreiben.


Schematische Darstellung des Belle II-Detektorsystems

Abb./©: Rey Hori, KEK

Ein wesentlicher Meilenstein war die Installation des vollständigen VerteX-Detektorsystems (VXD), dessen Entwicklung und Montage rund 10 Jahre dauerte. Dieser hochmoderne Spurdetektor ermöglicht die präzise Vermessung von Teilchenspuren nah an dem Interaktionspunkt, an dem hochenergetische Elektronen und Positronen des SuperKEKB miteinander kollidieren und andere Teilchen, insbesondere sogenannte B-Mesonen, produzieren können.

Die Arbeitsgruppe von Prof. Dr. Concettina Sfienti am Institut für Kernphysik der Johannes Gutenberg-Universität Mainz (JGU) hat dieses Vorhaben mit der Entwicklung und Programmierung spezieller Elektronik zur Überwachung des Detektorsystems unterstützt.

Mit Belle II sollen 50-mal mehr Daten als beim Vorgängerexperiment Belle gesammelt werden. Diese gewonnenen Daten sollen dann nicht nur genutzt werden, um bereits bekannte physikalische Phänomene mit deutlich verbesserter Präzision zu studieren, sondern auch für die Suche nach neuen Phänomenen, die durch das höchst erfolgreiche Standardmodell der Teilchenphysik nicht vorhergesagt werden und die Geheimnisse des frühen Universums neu beleuchten.

Insbesondere wollen die Wissenschaftlerinnen und Wissenschaftler mit Belle II Beweise für die Existenz neuer unbekannter Teilchen finden, die eine mögliche Erklärung für das Vorherrschen von Materie im Vergleich zu Antimaterie liefern und so weitere offene fundamentale Fragen zum Verständnis des Universums beantworten.

Die im Beschleuniger herbeigeführten Elektron-Positron-Kollisionen erzeugen große Mengen von B-Meson-Paaren, die nach kurzer Zeit bereits wieder zerfallen. Diese Zerfallsprodukte können – insbesondere auch unter Zuhilfenahme des VerteX-Detektorsystems – untersucht werden, um Abweichungen von der akzeptierten Theorie zu finden. Wenn sich statistisch signifikante Unterschiede zur Theorie ergäben, wäre dies eine der ersten Entdeckungen neuer Physik seit Entwicklung des Standardmodells in den 1970er-Jahren.

Um eine solche Entdeckung mit Sicherheit zu bestätigen, müssen um ein Vielfaches mehr B-Paare beobachtet werden als jemals in früheren Elektron-Positron-Anlagen produziert wurden. Noch hält der KEKB-Beschleuniger, der von 1999 bis 2010 betrieben wurde, den Luminositätsrekord für Elektron-Positron-Kollider.

Die Luminosität ist dabei der maßgebliche Indikator dafür, wie viele Teilchen überhaupt miteinander kollidieren können. Belle II soll nun mit der deutlichen Erhöhung der Luminosität die etwa 50-fache Anzahl an B-Meson-Zerfällen des ursprünglichen Belle-Experiments produzieren, das 760 Millionen solcher Ereignisse hervorbrachte.

Die Inbetriebnahme des SuperKEKB-Beschleunigers wurde im Februar 2016 erfolgreich abgeschlossen. In beiden Ringen zirkulierten daraufhin bereits die Teilchenstrahlen mit hervorragenden Strahleigenschaften, jedoch waren noch keine Kollisionen möglich. Es folgten im März 2018 in Phase 2 erste Kollisionen, die mit einem reduzierten Aufbau des Belle II-Detektors registriert werden konnten. Erste Ergebnisse aus Phase 2 wurden 2018 bereits auf internationalen Konferenzen gezeigt.

Die durch das Bundesministerium für Bildung und Forschung (BMBF) finanzierte Verbundforschungsförderung für Belle II ist eingebettet in das Rahmenprogramm „Erforschung von Universum und Materie (ErUM)“.

Bildmaterial:
http://www.uni-mainz.de/bilder_presse/08_kernphysik_belle-II.jpg
Schematische Darstellung des Belle II-Detektorsystems
Abb./©: Rey Hori, KEK

Weiterführende Links:


https://www.kek.jp/en/ – Forschungszentrum KEK – High Energy Accelerator Research Organization (KEK))


http://belle2.jp – Belle II-Experiment am Forschungszentrum KEK


https://www.kek.jp/en/newsroom/2019/03/11/1600/ – Pressemitteilung des Forschunsgzentrums KEK: „SuperKEKB Phase 3 (Belle II Physics Run) Starts“ (11.03.2019)


https://www.bmbf.de/de/erforschung-von-universum-und-materie---das-rahmenprogram... – Erforschung von Universum und Materie – das Rahmenprogramm ErUM des Bundesministeriums für Bildung und Forschung (BMBF)

Lesen Sie mehr:


http://www.uni-mainz.de/presse/aktuell/4887_DEU_HTML.php – Pressemitteilung „Erste Kollision von Elektronen und Positronen am japanischen Beschleuniger SuperKEKB“ (27.04.2018)


http://www.uni-mainz.de/presse/74697.php – Pressemitteilung „Erste Teilchenumläufe am Beschleuniger SuperKEKB“ (17.03.2016)

Wissenschaftliche Ansprechpartner:

Prof. Dr. Concettina Sfienti
Institut für Kernphysik
Johannes Gutenberg-Universität Mainz (JGU)
55099 Mainz
Tel. +49 6131 39-25841
E-Mail: sfienti@uni-mainz.de
https://www.kernphysik.uni-mainz.de/

Petra Giegerich | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Lumineszierende Gläser als Basis neuer Leuchtstoffe zur Optimierung von LED
17.10.2019 | Fraunhofer-Institut für Mikrostruktur von Werkstoffen und Systemen IMWS

nachricht Blindgänger mit Laser entschärft: Erfolgreicher Feldversuch zum Projektende
16.10.2019 | Laser Zentrum Hannover e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste Ameise der Welt - Wüstenflitzer haben kurze Beine, aber eine perfekte Koordination

Silberameisen gelten als schnellste Ameisen der Welt - obwohl ihre Beine verhältnismäßig kurz sind. Daher haben Forschende der Universität Ulm den besonderen Laufstil dieses "Wüstenflitzers" auf einer Ameisen-Rennstrecke ergründet. Veröffentlicht wurde diese Entdeckung jüngst im „Journal of Experimental Biology“.

Sie geht auf Nahrungssuche, wenn andere Siesta halten: Die saharische Silberameise macht vor allem in der Mittagshitze der Sahara und in den Wüsten der...

Im Focus: Fraunhofer FHR zeigt kontaktlose, zerstörungsfreie Qualitätskontrolle von Kunststoffprodukten auf der K 2019

Auf der K 2019, der Weltleitmesse für die Kunststoff- und Kautschukindustrie vom 16.-23. Oktober in Düsseldorf, demonstriert das Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR das breite Anwendungsspektrum des von ihm entwickelten Millimeterwellen-Scanners SAMMI® im Kunststoffbereich. Im Rahmen des Messeauftritts führen die Wissenschaftler die vielseitigen Möglichkeiten der Millimeterwellentechnologie zur kontaktlosen, zerstörungsfreien Prüfung von Kunststoffprodukten vor.

Millimeterwellen sind in der Lage, nicht leitende, sogenannte dielektrische Materialien zu durchdringen. Damit eigen sie sich in besonderem Maße zum Einsatz in...

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: Rätsel gelöst: Das Quantenleuchten dünner Schichten

Eine ganz spezielle Art von Licht wird von Wolfram-Diselenid-Schichten ausgesandt. Warum das so ist, war bisher unklar. An der TU Wien wurde nun eine Erklärung gefunden.

Es ist ein merkwürdiges Phänomen, das jahrelang niemand erklären konnte: Wenn man einer dünnen Schicht des Materials Wolfram-Diselenid Energie zuführt, dann...

Im Focus: Wie sich Reibung bei topologischen Isolatoren kontrollieren lässt

Topologische Isolatoren sind neuartige Materialien, die elektrischen Strom an der Oberfläche leiten, sich im Innern aber wie Isolatoren verhalten. Wie sie auf Reibung reagieren, haben Physiker der Universität Basel und der Technischen Universität Istanbul nun erstmals untersucht. Ihr Experiment zeigt, dass die durch Reibung erzeugt Wärme deutlich geringer ausfällt als in herkömmlichen Materialien. Dafür verantwortlich ist ein neuartiger Quantenmechanismus, berichten die Forscher in der Fachzeitschrift «Nature Materials».

Dank ihren einzigartigen elektrischen Eigenschaften versprechen topologische Isolatoren zahlreiche Neuerungen in der Elektronik- und Computerindustrie, aber...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Wenn der Mensch auf Künstliche Intelligenz trifft

17.10.2019 | Veranstaltungen

Verletzungen des Sprunggelenks immer ärztlich abklären lassen

16.10.2019 | Veranstaltungen

Digitalisierung trifft Energiewende

15.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Dehnbare Elektronik: Neues Verfahren vereinfacht Herstellung funktionaler Prototypen

17.10.2019 | Materialwissenschaften

Lumineszierende Gläser als Basis neuer Leuchtstoffe zur Optimierung von LED

17.10.2019 | Physik Astronomie

Dank Hochfrequenz wird Kommunikation ins All möglich

17.10.2019 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics