Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erfolgreiche Suche nach Atomkernen, mit denen Neutrinos erforscht werden können

08.02.2011
Messung von Atomkern-Massen mit höchster Präzision bei GSI

Mit der Ionenfalle Shiptrap haben Wissenschaftler bei GSI mit höchster Präzision die Massenunterschiede bestimmter Atomkerne gemessen, die für einen sehr seltenen radioaktiven Zerfallsprozess in Frage kommen. Somit konnten sie mit dem Isotop Gadolinium-152 den bislang am besten geeigneten Atomkern bestimmen, um durch seinen Zerfall in anderen zukünftigen Experimenten, neue Erkenntnisse über Neutrinos zu gewinnen.

Eine der Grundfragen der Kosmologie ist warum es nach dem Urknall mehr Materie als Antimaterie gab, so dass außer bloßer Strahlung überhaupt etwas übrig geblieben ist, um Galaxien, Sterne, Planetensysteme, Lebewesen und schließlich unsere eigene Existenz zu ermöglichen. Das Verständnis hierzu ist mit den Eigenschaften von Neutrinos verbunden. Neutrinos sind Elementarteilchen, die auch als Geisterteilchen bezeichnet werden, da sie nur extrem schwach mit der uns bekannten "gewöhnlichen" Materie in Wechselwirkung treten und diese nahezu ungehindert durchdringen. Dementsprechend sind noch viele Eigenschaften von Neutrinos unbekannt.

So wird zum Beispiel vermutet, dass ein Neutrino sein eigenes Antiteilchen sein könnte (sog. Majorana-Teilchen), ein noch niemals beobachtetes Phänomen. Das würde bedeuten, dass ein Neutrino und ein Anti-Neutrino identisch wären. Da sich ein Teilchen und sein Anti-Teilchen gegenseitig vernichten, hieße das, dass sich zwei Neutrinos selbst vernichten würden.

Neutrinos entstehen natürlicherweise in bestimmten radioaktiven Zerfällen von Atomkernen. Beim radioaktiven Zerfall wandelt sich ein Atomkern, der Mutterkern, in einen anderen, den Tochterkern, um. Ein möglicher Nachweis, ob das Neutrino sein eigenes Antiteilchen ist, wäre die Beobachtung einer bestimmten radioaktiven Zerfallsart, des so genannten neutrinolosen Doppel-Elektroneneinfangs. Bei diesem sehr seltenen Zerfallsprozess werden zwei Elektronen aus der Hülle von Protonen im Atomkern eingefangen und es entstehen unter anderem zwei Neutrinos. Wenn nun das Neutrino mit seinem Antiteilchen identisch wäre, so könnten sich diese gegenseitig auslöschen, sodass kein Neutrino ausgesendet würde, deshalb die Bezeichnung neutrinolos.

Dieser neutrinolose Zerfallsprozess ist allerdings experimentell, wenn überhaupt, nur nachweisbar, wenn die Masse des Mutterkerns zwar größer ist als die des Tochterkerns, sich dabei aber so gering wie möglich unterscheidet. Um auch noch geringste Massenunterschiede messen zu können, benutzten Wissenschaftler die Ionenfalle Shiptrap. Mit Shiptrap können die Wissenschaftler Massen mit höchster Genauigkeit messen. Mit der Genauigkeit könnten sie theoretisch nachweisen, ob in einem voll beladenen Jumbo-Jet ein Passagier eine 1 Euro Münze im Portemonnaie hat oder nicht.

Mit Shiptrap untersuchten die Wissenschaftler nun systematisch die Massen von möglichen Atomkernen, um den besten Kandidaten für den neutrinolosen Doppel-Elektroneneinfang zu bestimmen. Sie fanden heraus, dass das Gadolinium-Isotop mit der Massenzahl 152 (Gadolinium-152), welches in das Isotop Samarium-152 zerfällt, der zurzeit vielversprechendste Kandidat ist. Es ist somit das geeignete Isotop, um in zukünftigen Neutrino-Experimentaufbauten wie zum Beispiel in Gran Sasso untersucht zu werden mit dem Ziel, bei dessen Zerfall erstmalig die Vernichtung zweier Neutrinos nachzuweisen.

Über die Messung der Halbwertszeit von Gadolinium-152, die im Bereich von 10 hoch 26 Jahren liegt, ließen sich auch Grenzen für die Masse der Neutrinos bestimmen. Erst seit kurzem ist bekannt, dass Neutrinos überhaupt eine Masse haben, die allerdings sehr klein ist und noch nie direkt gemessen werden konnte. Der Ansatz über den Zerfall von Gadolinium-152 Informationen über die Masse der Neutrinos zu erhalten, ist komplementär zu anderen Experimentaufbauten in der Helmholtz-Gemeinschaft wie Katrin am KIT in Karlsruhe.

An den Experimenten bei GSI waren unter Federführung des Max-Planck-Instituts in Heidelberg 17 Wissenschaftler aus 11 Instituten beteiligt: Max-Planck-Institut für Kernphysik, Heidelberg, Ruprecht-Karls-Universität Heidelberg, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Ernst-Moritz-Arndt-Universität, Greifswald, Institute for Theoretical and Experimental Physics Moskau Russland, PNPI Gatchina, St. Petersburg, Russland, Helmholtz-Institut Mainz, Johannes Gutenberg-Universität Mainz, St. Petersburg State University, Russland, Joint Institute for Nuclear Research, Dubna, Russland, Comenius University Bratislava, Slowakei, Technische Universität Dresden

Dr. Ingo Peter | idw
Weitere Informationen:
http://dx.doi.org/10.1103/PhysRevLett.106.052504
http://www.mpi-hd.mpg.de/mpi/de/aktuelles/aktuelles/?tx_ttnews[tt_news]=110 -

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Lichtpulse bewegen Spins von Atom zu Atom
17.02.2020 | Forschungsverbund Berlin e.V.

nachricht Physik des Lebens - Die Logistik des Molekül-Puzzles
17.02.2020 | Ludwig-Maximilians-Universität München

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lichtpulse bewegen Spins von Atom zu Atom

Forscher des Max-Born-Instituts für Nichtlineare Optik und Kurzpulsspektroskopie (MBI) und des Max-Planck-Instituts für Mikrostrukturphysik haben durch die Kombination von Experiment und Theorie die Frage gelöst, wie Laserpulse die Magnetisierung durch ultraschnellen Elektronentransfer zwischen verschiedenen Atomen manipulieren können.

Wenige nanometerdünne Filme aus magnetischen Materialien sind ideale Testobjekte, um grundlegende Fragestellungen des Magnetismus zu untersuchen. Darüber...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Transparente menschliche Organe ermöglichen dreidimensionale Kartierungen auf Zellebene

Erstmals gelang es Wissenschaftlerinnen und Wissenschaftlern, intakte menschliche Organe durchsichtig zu machen. Mittels mikroskopischer Bildgebung konnten sie die zugrunde liegenden komplexen Strukturen der durchsichtigen Organe auf zellulärer Ebene sichtbar machen. Solche strukturellen Kartierungen von Organen bergen das Potenzial, künftig als Vorlage für 3D-Bioprinting-Technologien zum Einsatz zu kommen. Das wäre ein wichtiger Schritt, um in Zukunft künstliche Alternativen als Ersatz für benötigte Spenderorgane erzeugen zu können. Dies sind die Ergebnisse des Helmholtz Zentrums München, der Ludwig-Maximilians-Universität (LMU) und der Technischen Universität München (TUM).

In der biomedizinischen Forschung gilt „seeing is believing“. Die Entschlüsselung der strukturellen Komplexität menschlicher Organe war schon immer eine große...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Skyrmionen mögen es heiß – Spinstrukturen auch bei hohen Temperaturen steuerbar

Neue Spinstrukturen für zukünftige Magnetspeicher: Die Untersuchung der Temperaturabhängigkeit des Skyrmion-Hall-Effekts liefert weitere Einblicke in mögliche neue Datenspeichergeräte

Ein gemeinsames Forschungsprojekt der Johannes Gutenberg-Universität Mainz (JGU) und des Massachusetts Institute of Technology (MIT) hat einen weiteren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

4. Fachtagung Fahrzeugklimatisierung am 13.-14. Mai 2020 in Stuttgart

10.02.2020 | Veranstaltungen

Alternative Antriebskonzepte, technische Innovationen und Brandschutz im Schienenfahrzeugbau

07.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Höhere Treibhausgasemissionen durch schnelles Auftauen des Permafrostes

18.02.2020 | Geowissenschaften

Supermagnete aus dem 3D-Drucker

18.02.2020 | Maschinenbau

Warum Lebewesen schrumpfen

18.02.2020 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics