Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Entwicklung neuer Entspiegelungen mithilfe nanostrukturierter Schichtmaterialien

06.07.2016

Optische Komponenten begleiten uns in nahezu allen Alltagsanwendungen – von Handykameras über Abstandssensoren in Autos bis hin zu Objektiven für hochauflösende Kameras. Doch ohne Entspiegelung gehen an jeder Grenzfläche einer optischen Komponente mehrere Prozent des Lichtes verloren. Deshalb sind heute insbesondere Systeme aus mehreren Linsen wie z.B. in Fotoapparaten oder Fahrzeugdisplays ohne Antireflex (AR)-Funktion undenkbar. Forschern gelang es nun, erfolgreich eine neue Methode der Entspiegelung mithilfe nanostrukturierter Schichtmaterialien zu entwickeln.

Der Markt für optische Komponenten wächst seit Jahren - entsprechend hoch ist deshalb die technische Bedeutung von Entspiegelungen. Diese sind unverzichtbar um geringe Lichtausbeuten, Kontrastverluste bei Abbildungen und „Geisterbilder“ zu vermeiden, welche durch unkontrolliert reflektiertes Licht entstehen.


Halbseitig entspiegelte Linse

W. Oppel, Fraunhofer IOF

Ein Verbund von Forschern aus Wissenschaft und Wirtschaft, koordiniert von der Carl Zeiss Jena GmbH, hat im Rahmen des kürzlich abgeschlossenen Projekts „Farbneutrale Interferenzschichten zur Entspiegelung unter Berücksichtigung organischer Nanostrukturen“, kurz FIONA, eine Entspiegelungstechnik entwickelt, die einen deutlich breiteren Wellenlängenbereich abdeckt und somit auch stark gekrümmte Linsen entspiegeln kann.

Laut einer aktuellen Studie von Markets&Markets erwirtschaftete der Markt für optische Beschichtungen einen Jahresumsatz von rund 1,02 Mrd. Dollar (2014) und dies bei einer prognostizierten Wachstumsrate von 8,4 Prozent bis zum Jahr 2020. Anhand dieser Zahlen wird deutlich, dass die Entwicklung breitbandiger ARBeschichtungen für komplex geformte Oberflächen eine immer wichtigere Rolle in der Optikfertigung spielt.

Eine optimale Entspiegelungsschicht besitzt einen kontinuierlichen Brechzahlverlauf zwischen der Oberfläche des Substrates und dem umgebenden Medium Luft. Aus diesem Grund kann eine Entspiegelung verbessert werden, wenn für die letzte Schicht des Interferenzschichtsystems ein sehr niedrigbrechendes Material eingesetzt wird.

Nanostrukturen mit einer Strukturgröße kleiner der Lichtwellenlänge wirken auf der Oberfläche wie eine sehr niedrigbrechende Schicht. Konkretes Ziel des Projekts war deshalb die Entwicklung eines Verfahrens zur Entspiegelung mithilfe nanostrukturierter Schichten. Die resultierenden Schichtsysteme zeichnen sich durch neuartige Kombinationen von klassischen Interferenzschichtsystemen mit solchen Nanostrukturen aus.

Die sogenannten Sub-Wellenlängenstrukturen mit einer Strukturtiefe von wenigen hundert Nanometern wurden dabei durch verschiedene Verfahren erzeugt. Am Fraunhofer IOF wurde das etablierte Plasmastrukturierungsverfahrens »AR-Plas©« auf neue organischen Schichten angewendet, während die Carl Zeiss Jena GmbH den Schwerpunkt auf anorganische Nanostrukturen aus Siliziumdioxid und Magnesiumfluorid legte.

Die neuentwickelten Schichten sind bezüglich ihrer Funktionalität auf gekrümmten Linsen weltführend. Besonders hervorzuheben ist in diesem Kontext die deutlich erweiterte Winkelakzeptanz der Entspiegelungen, die homogenere Wirkung der AR-Vergütung auf stark gekrümmten Oberflächen sowie die AR-Wirkung über wesentlich breitere Spektralbereiche.

Die erzielte Entspiegelungswirkung reicht vom visuellen bis in den infraroten Spektralbereich und erscheint auch bei größerer Krümmung auf Linsen farbneutral. Die in dem Spektralbereich von 400 bis 1500 nm erreichte mittlere Restreflexion kleiner als 0.3% ist mit klassischen Interferenzschichten kaum erreichbar.

Untersucht wurde die Methode für eine Vielzahl von Optikkomponenten, wie zum Beispiel optische Linsen für Kameraobjektive, Mikroskope und medizintechnische Geräte. Die verbesserte Entspiegelungswirkung konnte an Demonstratorlinsen der Projektpartner gezeigt werden. Außerdem erzielte ein erstes Testobjektiv mit den neuartig beschichteten Linsen verbesserte optische Eigenschaften.

Gefördert wurden die gut drei Jahre andauernden Forschungs- und Entwicklungsarbeiten vom Bundesministerium für Bildung und Forschung (BMBF) innerhalb der Förderinitiative »Innovative Anwendungen der Plasmatechnik«. Am Projekt beteiligt waren die Partner Agfa-Gevaert Health Care GmbH, asphericon GmbH, Carl Zeiss Jena GmbH, Leica Microsystems GmbH, Qioptiq Photonics GmbH & Co. KG und das Fraunhofer Institut für Angewandte Optik und Feinmechanik.

Presse Institute Kommunikation | Fraunhofer-Gesellschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Eisen und Titan in der Atmosphäre eines Exoplaneten entdeckt
16.08.2018 | Universität Bern

nachricht Leibniz-IWT an Raumfahrtmission beteiligt: Bremer unterstützen Experimente im All
14.08.2018 | Leibniz-Institut für Werkstofforientierte Technologien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Eisen und Titan in der Atmosphäre eines Exoplaneten entdeckt

Forschende der Universitäten Bern und Genf haben erstmals in der Atmosphäre eines Exoplaneten Eisen und Titan nachgewiesen. Die Existenz dieser Elemente in Gasform wurde von einem Team um den Berner Astronomen Kevin Heng theoretisch vorausgesagt und konnte nun von Genfern Astronominnen und Astronomen bestätigt werden.

Planeten in anderen Sonnensystemen, sogenannte Exoplaneten, können sehr nah um ihren Stern kreisen. Wenn dieser Stern viel heisser ist als unsere Sonne, dann...

Im Focus: Magnetische Antiteilchen eröffnen neue Horizonte für die Informationstechnologie

Computersimulationen zeigen neues Verhalten von Antiskyrmionen bei zunehmenden elektrischen Strömen

Skyrmionen sind magnetische Nanopartikel, die als vielversprechende Kandidaten für neue Technologien zur Datenspeicherung und Informationsverarbeitung gelten....

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: Neue interaktive Software: Maschinelles Lernen macht Autodesigns aerodynamischer

Neue Software verwendet erstmals maschinelles Lernen um Strömungsfelder um interaktiv designbare 3D-Objekte zu berechnen. Methode wird auf der renommierten SIGGRAPH-Konferenz vorgestellt

Wollen Ingenieure oder Designer die aerodynamischen Eigenschaften eines neu gestalteten Autos, eines Flugzeugs oder anderer Objekte testen, lassen sie den...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Aktuelles aus der Magnetischen Resonanzspektroskopie

16.08.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Oktober 2018

16.08.2018 | Veranstaltungen

Das Architekturmodell in Zeiten der Digitalen Transformation

14.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Schatzkammer Datenbank: Digitalisierte Schwingfestigkeitskennwerte sparen Entwicklungszeit

16.08.2018 | Informationstechnologie

Interaktive Software erleichtert Design komplexer Gussformen

16.08.2018 | Informationstechnologie

Fraunhofer HHI entwickelt Quantenkommunikation für jedermann im EU-Projekt UNIQORN

16.08.2018 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics