Elektronenspins an Halbleiteroberfläche getrennt

Würzburger Physiker haben die Spin-Architektur einer Halbleiteroberfläche bestimmt. Dazu wurden die Elektronen durch Lichtanregung aus dem Material herausgelöst, so dass ihre Spin-Orientierung vermessen werden konnte. Grafik: Philipp Höpfner<br>

Deutlich schnellere Computer wären möglich, wenn sich der Spin der Elektronen bei der Datenverarbeitung als Informationsträger nutzen ließe. Was der Spin ist? Der Spin verleiht dem Elektron über seine Ladung hinaus auch magnetische Eigenschaften. „Das kann man sich so vorstellen, als ob jedes Elektron einen winzig kleinen Elementarmagneten trägt, wie eine Kompassnadel“, sagt der Würzburger Physiker Jörg Schäfer.

Um den Spin für die Elektronik nutzen zu können, also um eine „Spintronik“ zu realisieren, müsste es gelingen, die in einem Halbleiterchip fließenden Elektronen nach ihrem Spin-Zustand zu ordnen, also ihre Spitzen gleich auszurichten. Diese Formation müssten die elementaren Magnetnadeln beibehalten, wenn sie als so genannte Spinströme auf die Reise durch das elektronische Bauteil geschickt werden.

Spin-Trennung klappt ohne Magnetfelder durch einen Trick

Seit langem ist bekannt, dass man die Spins durch Magnetfelder beeinflussen kann. Doch für Bauteilanwendungen wäre das vollkommen unpraktikabel. Daher wenden die Festkörperphysiker einen ausgeklügelten Trick an: Auf einen halbleitenden Festkörper wird eine ultradünne Metallschicht aufgedampft, die nur eine Atomlage dick ist. Darin sortieren sich die Elektronen von ganz allein in zwei Gruppen mit entgegengesetzter Magnetnadelorientierung.

Dieser Effekt fällt umso stärker aus, je schwerer die verwendeten Metallatome sind. „Diese automatische Spin-Trennung wollten wir in einem modellhaften Experiment erzeugen und genauer untersuchen“, erklärt Professor Ralph Claessen. Als besonders schweres Metall wählten die Würzburger Physiker Gold, das sie hauchfein auf ein Halbleiterplättchen aus Germanium aufdampften.

Enges Zusammenspiel von Theorie und Experiment

Die experimentellen Befunde zum Spin-Muster entsprechen sehr genau den Vorhersagen, welche die Würzburger Physik-Theoretiker um Professor Werner Hanke entwickelt haben. „Wir können die Spin-Anordnung im Halbleiter mathematisch modellieren und mit modernsten Rechnern sehr genaue praktische Vorhersagen machen“, erläutert Hanke.

Experimentell nachgewiesen wird das Spin-Muster mit der Technik der Photoemission. Diese Messungen wurden am Paul-Scherrer-Institut in der Schweiz durchgeführt. Die Halbleiteroberfläche mit der Goldschicht wird dabei mit dem besonders intensiven Röntgenlicht eines Synchrotrons bestrahlt. Dadurch lösen sich Elektronen und fliegen – in Abhängigkeit von ihrem Spin – unter verschiedenen Winkeln aus der Probe heraus und werden mit Detektoren nachgewiesen.

Zwei Spinausrichtungen erstmals klar belegt

„Wir haben eine starke Aufspaltung der Spins in zwei Gruppen mit entgegengesetzter Orientierung der Magnetnadeln sowie ein spezielles Spin-Muster gefunden“, so Jörg Schäfer. Demnach zeigen alle Spins entweder aus der Oberfläche heraus oder in sie hinein. „Der Verdienst dieser Zusammenarbeit zwischen Theorie und Experiment ist es, erstmals das dreidimensionale Spin-Muster aufgeklärt zu haben“, sagt Ralph Claessen. Die Ergebnisse zeigen vor allem deutlich, dass die Trennung der Leitungselektronen nach ihrem Spin gut funktioniert. Damit lassen sie sich separat auf die Reise durch ein Metall schicken. Für die Spintronik ist das neues und wichtiges Grundlagenwissen.

Dieser Nachweis hat die Herausgeber des Fachjournals „Physical Review Letters“ regelrecht begeistert: Der Forschungserfolg aus Würzburg wird dem Fachpublikum vom Herausgeber als „Editor’s Suggestion“ zur Lektüre besonders empfohlen.

Arbeit im Rahmen einer DFG-Forschergruppe

Entstanden ist die Publikation aus der Würzburger Forschergruppe 1162, die seit 2009 mit rund drei Millionen Euro von der Deutschen Forschungsgemeinschaft (DFG) gefördert wird. Die Gruppe untersucht elektronische Quanteneffekte in Nanostrukturen; Ralph Claessen ist ihr Sprecher.

“Three-Dimensional Spin Rotations at the Fermi Surface of a Strongly Spin-Orbit Coupled Surface System”, P. Höpfner, J. Schäfer, A. Fleszar, J. H. Dil, B. Slomski, F. Meier, C. Loho, C. Blumenstein, L. Patthey, W. Hanke, and R. Claessen, Physical Review Letters 108, 186801 (2012), DOI 10.1103/PhysRevLett.108.186801

Kontakt

Prof. Dr. Ralph Claessen, Physikalisches Institut der Universität Würzburg, T (0931) 31-85732, claessen@physik.uni-wuerzburg.de

Media Contact

Robert Emmerich Uni Würzburg

Weitere Informationen:

http://www.uni-wuerzburg.de

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Anlagenkonzepte für die Fertigung von Bipolarplatten, MEAs und Drucktanks

Grüner Wasserstoff zählt zu den Energieträgern der Zukunft. Um ihn in großen Mengen zu erzeugen, zu speichern und wieder in elektrische Energie zu wandeln, bedarf es effizienter und skalierbarer Fertigungsprozesse…

Ausfallsichere Dehnungssensoren ohne Stromverbrauch

Um die Sicherheit von Brücken, Kränen, Pipelines, Windrädern und vielem mehr zu überwachen, werden Dehnungssensoren benötigt. Eine grundlegend neue Technologie dafür haben Wissenschaftlerinnen und Wissenschaftler aus Bochum und Paderborn entwickelt….

Dauerlastfähige Wechselrichter

… ermöglichen deutliche Leistungssteigerung elektrischer Antriebe. Überhitzende Komponenten limitieren die Leistungsfähigkeit von Antriebssträngen bei Elektrofahrzeugen erheblich. Wechselrichtern fällt dabei eine große thermische Last zu, weshalb sie unter hohem Energieaufwand aktiv…

Partner & Förderer