Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Elektronenautobahn im Kristall

09.12.2016

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen noch einmal hervorgehoben, als die Königlich-Schwedische Akademie der Wissenschaften in Stockholm den diesjährigen Physiknobelpreis an drei britische Wissenschaftler verliehen hat für die Erforschung sogenannter topologischer Phasenübergänge und topologischer Phasen von Materie.


An Stufenkanten topologisch kristalliner Isolatoren bilden sich unter bestimmten Umständen Leiterbahnen. Auf ihnen bewegen sich Elektronen mit unterschiedlichem Spin in entgegengesetzte Richtungen.

Grafik: Thomas Bathon/Paolo Sessi/Matthias Bode


Ein Zufall hat sie auf die Spur der Leiterbahnen gebracht (v.l.): die Physiker Matthias Bode, Paolo Sessi und Domenico Di Sante in ihrem Labor.

Foto: Matthias Bode

An topologischen Isolatoren wird auch an den Lehrstühlen für Experimentelle Physik II und Theoretische Physik I der Universität Würzburg geforscht, allerdings an einer speziellen Variante: topologisch kristallinen Isolatoren (TCI). In Kooperation mit Wissenschaftlern der Polnischen Akademie der Wissenschaften in Warschau sowie der Universität Zürich ist den Würzburger Physikern jetzt ein wichtiger Durchbruch gelungen. Sie konnten an diesen Isolatoren neuartige elektronische Zustände von Materie nachweisen. In der aktuellen Ausgabe von Science stellen sie ihre Arbeit vor.

Stufenkanten geben Elektronen den Weg vor

Das zentrale Ergebnis: Werden kristalline Materialien gespalten, entstehen an den abgespalteten Oberflächen kleine atomar flache Bereiche, die durch Stufenkanten voneinander getrennt sind. Darin bilden sich Leiterbahnen für elektrische Ströme, die mit etwa zehn Nanometern extrem schmal sind und die sich durch eine überraschende Robustheit gegen äußere Störungen auszeichnen.

In diesen Leiterbahnen bewegen sich Elektronen mit unterschiedlichem Spin in entgegengesetzte Richtungen – ähnlich einer Autobahn mit separaten Fahrspuren für beide Fahrrichtungen. Dies macht die Materialien für technologische Anwendungen in zukünftigen Elektronik-Bauteilen, wie etwa in besonders schnellen und energiesparenden Computern, interessant.

„TCIs sind verhältnismäßig einfach herzustellen und heben sich bereits aufgrund ihrer besonderen Kristallstruktur von konventionellen Materialien ab“, erklärt Dr. Paolo Sessi den Hintergrund der jetzt veröffentlichten Arbeit. Sessi ist Wissenschaftlicher Mitarbeiter am Lehrstuhl für Experimentelle Physik II und Erstautor der Studie.

Was sie außerdem so besonders macht, sind ihre elektronischen Eigenschaften: In topologischen Materialien bedingt die Richtung des Spins die Bewegungsrichtung der Elektronen. „Spin“ kann vereinfacht als magnetischer Dipol interpretiert werden, der in zwei Richtungen („up“ und „down“) zeigen kann. Up-Spin-Elektronen bewegen sich demnach in TCIs in die eine, down-Spin Elektronen in die andere Richtung.

Auf die Anzahl der atomaren Schichten kommt es an

„Allerdings war bislang weitestgehend unklar, wie die dafür nötigen Leiterbahnen hergestellt werden könnten“, erklärt Professor Matthias Bode, Inhaber des Lehrstuhls für Experimentelle Physik II und Mitautor der Studie. Der Zufall brachte die Forscher jetzt auf den richtigen Weg: Sie entdeckten, dass beim Spalten des topologisch kristallinen Isolators Blei-Zinn-Selenid (PbSnSe) sehr schmale Leiterbahnen auf ganz natürliche Weise entstehen.

Verantwortlich dafür sind Stufenkanten auf den Oberflächen der Bruchstücke, die sich mit einem hochauflösenden Rastertunnelmikroskop abbilden lassen – genauer gesagt: die Höhe der jeweiligen Stufenkanten. „Kanten, die eine gerade Anzahl atomarer Ebenen überbrücken, sind völlig unauffällig. Reichen die Kanten allerdings über eine ungerade Anzahl atomarer Ebenen entsteht, ein etwa zehn Nanometer schmaler Bereich mit den bislang unbekannten elektronischen Leitungsbahneigenschaften“, erklärt Sessi.

An der Kante bricht das Muster

Den Ursprung dieser neuen elektronischen Zustände konnten die Experimentalphysiker dank der Unterstützung Würzburger Kollegen vom Lehrstuhl für Theoretische Physik 1 sowie der Universität Zürich aufklären. Zum Verständnis ist ein wenig räumliches Vorstellungsvermögen notwendig:

„Die Kristallstruktur führt zu einer Anordnung der Atome, bei der sich die verschiedenen Elemente wie die weißen und schwarzen Felder eines Schachfeldes abwechseln“, erklärt Matthias Bode. Der Wechsel von Weiß und Schwarz gilt nicht nur für nebeneinander liegende Felder, sondern auch für darüber und darunter liegende.

Zieht sich der Bruch dieses Kristalls also durch unterschiedliche atomare Schichten, bildet sich dort nicht nur eine Kante. Von oben gesehen können an dieser Kante auch weiße an weiße Felder stoßen und schwarze an schwarze – oder eben gleiche Atome an gleiche – aber nur dann, wenn eine ungerade Anzahl von Atomlagen für den Höhenunterschied zwischen den beiden Oberflächen sorgt.

Bestätigung durch die Theorie

„Berechnungen zeigen, dass dieser Versatz an der Oberfläche tatsächlich für diese neuartigen elektronischen Zustände ursächlich ist“, sagt Paolo Sassi. Sie weisen darüber hinaus nach, dass die für topologische Materialien charakteristische spinabhängige Leitungsbahnphänomenologie auch hier vorliegt.

Nach Ansicht der Wissenschaftler macht insbesondere diese Eigenschaft die Entdeckung für potentielle Anwendungen interessant, da derartige Leitungsbahnen einerseits zu geringen Leitungsverlusten führen, andererseits aber auch direkt für die Übermittlung und Verarbeitung von Information im Bereich der Spintronics genutzt werden könnten.

Hierzu müssten allerdings noch zahlreiche Fragen beantwortet und Herausforderungen überwunden werden. So sei beispielsweise nicht klar, über welche Distanzen sich Ströme in den neu entdeckten Leiterbahnen transportieren lassen. Auch müssten für die Anwendung in Schaltkreisen Methoden entwickelt werden, mit denen Stufenkanten definierter Höhe entlang vorgegebener Richtungen erzeugt werden können.

Robust spin-polarized midgap states at step edges of topological crystalline insulators, Paolo Sessi, Domenico Di Sante, Andrzej Szczerbakow, Florian Glott, Stefan Wilfert, Henrik Schmidt, Thomas Bathon, Piotr Dziawa, Martin Greiter, Titus Neupert, Giorgio Sangiovanni, Tomasz Story, Ronny Thomale und Matthias Bode; Science Magazine 2016. DOI: 10.1126/science.aah6233

Kontakt

Dr. Paolo Sessi, Lehrstuhl für Experimentelle Physik 2, Universität Würzburg
T: (0931) 31-88021, E-Mail: paolo.sessi@physik.uni-wuerzburg.de

Prof. Dr. Matthias Bode, Lehrstuhl für Experimentelle Physik 2, Universität Würzburg
T: (0931) 31-83218, E-Mail: bode@physik.uni-wuerzburg.de

Weitere Informationen:

https://youtu.be/jLq1rFPJ4lw Video auf Youtube

Gunnar Bartsch | Julius-Maximilians-Universität Würzburg
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Berichte zu: Atome Elektronen Kante Kristallstruktur Leiterbahnen Physik spin topologische Isolatoren

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Leibniz-IWT an Raumfahrtmission beteiligt: Bremer unterstützen Experimente im All
14.08.2018 | Leibniz-Institut für Werkstofforientierte Technologien

nachricht Intensive Laser-Cluster Wechselwirkungen führen zu niedrigenergetischer Elektronenemission
09.08.2018 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Magnetische Antiteilchen eröffnen neue Horizonte für die Informationstechnologie

Computersimulationen zeigen neues Verhalten von Antiskyrmionen bei zunehmenden elektrischen Strömen

Skyrmionen sind magnetische Nanopartikel, die als vielversprechende Kandidaten für neue Technologien zur Datenspeicherung und Informationsverarbeitung gelten....

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: Neue interaktive Software: Maschinelles Lernen macht Autodesigns aerodynamischer

Neue Software verwendet erstmals maschinelles Lernen um Strömungsfelder um interaktiv designbare 3D-Objekte zu berechnen. Methode wird auf der renommierten SIGGRAPH-Konferenz vorgestellt

Wollen Ingenieure oder Designer die aerodynamischen Eigenschaften eines neu gestalteten Autos, eines Flugzeugs oder anderer Objekte testen, lassen sie den...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Der Roboter als „Tankwart“: TU Graz entwickelt robotergesteuertes Schnellladesystem für E-Fahrzeuge

Eine Weltneuheit präsentieren Forschende der TU Graz gemeinsam mit Industriepartnern: Den Prototypen eines robotergesteuerten CCS-Schnellladesystems für Elektrofahrzeuge, das erstmals auch das serielle Laden von Fahrzeugen in unterschiedlichen Parkpositionen ermöglicht.

Für elektrisch angetriebene Fahrzeuge werden weltweit hohe Wachstumsraten prognostiziert: 2025, so die Prognosen, wird es jährlich bereits 25 Millionen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Das Architekturmodell in Zeiten der Digitalen Transformation

14.08.2018 | Veranstaltungen

EEA-ESEM Konferenz findet an der Uni Köln statt

13.08.2018 | Veranstaltungen

Digitalisierung in der chemischen Industrie

09.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Macht Sinn: Fraunhofer entwickelt Sensorsystem für KMU

15.08.2018 | Energie und Elektrotechnik

Magnetische Antiteilchen eröffnen neue Horizonte für die Informationstechnologie

15.08.2018 | Informationstechnologie

FKIE-Wissenschaftler präsentiert neuen Ansatz zur Detektion von Malware-Daten in Bilddateien

15.08.2018 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics