Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Was Elektronen zum Zittern bringt: Bewegungen in Halbleitern erzeugen Strahlung mit Rekordbandbreite

20.01.2014
Moderne Hochgeschwindigkeitselektronik basiert auf winzigen Halbleiter-Strukturen, in denen Elektronen mit Hilfe von elektrischen Feldern auf immer höhere Geschwindigkeiten beschleunigt werden.

Bald schon dürften Feldstärken erreicht werden, die zu einer neuen Klasse von Quantenphänomenen führen. Physiker der Universitäten Regensburg, Marburg und Paderborn haben nun nachgewiesen, dass sich Elektronen unter diesen Bedingungen nicht mehr monoton in eine Richtung bewegen, sondern extrem schnelle Oszillationen ausführen, die Licht über einen superbreiten Spektralbereich ausstrahlen. Die Ergebnisse wurden in der Fachzeitschrift „Nature Photonics“ veröffentlicht (DOI: 10.1038/nphoton.2013.349).


Schematische Darstellung oszillierender Elektronen, die hochfrequente elektro-magnetische Strahlung aussenden.

Bildnachweis: Universität Regensburg – Zur ausschließlichen Verwendung im Rahmen der Berichterstattung zu dieser Pressemitteilung.

Vor 85 Jahren beschrieb Felix Bloch, einer der Väter der modernen Festkörperphysik, die Bewegungen von Elektronen in einem Festkörper mit quantenmechanischen Wellen. Die Bewegungen sind dabei mit den Bewegungen von Wellen auf dem Wasser vergleichbar: Treffen sie auf ein Hindernis, etwa einen Stein, dann werden sie gestreut und auf der Wasseroberfläche bildet sich ein Muster kleiner Wellen aus.

In einem Festkörper führt die enorme Anzahl periodisch angeordneter Atome zu einem hochkomplexen Streumuster der Elektronen und zu einer überraschenden Vorhersage: In einem starken elektrischen Feld sollten sich Elektronen demnach nicht – wie intuitiv erwartet – gleichförmig in eine Richtung bewegen, sondern beginnen zu oszillieren. Dieses merkwürdige Verhalten konnte aber bislang nur in künstlichen Modellsystemen beobachtet werden, weil die Wellennatur der Elektronen durch ihre Wechselwirkung untereinander sowie mit dem Atomgitter eines natürlichen Festkörpers schnell „verwischt“ wird.

Einem Team um Prof. Dr. Rupert Huber vom Institut für Experimentelle und Angewandte Physik der Universität Regensburg ist es nun in einem bahnbrechenden Experiment gelungen, elektrische Felder in der Größenordnung von 10 Milliarden Volt pro Meter mit einer Präzision von billiardstel Sekunden an Halbleiter anzulegen und die Oszillation der Elektronen zu beobachten, bevor sie verwischt.

Die Forscher nutzen dazu eine erst vor kurzem in Betrieb genommene Hochfeld-Terahertzquelle an der Universität Regensburg. Sie kann ultrakurze Lichtblitze im infraroten Spektralbereich mit Rekordintensitäten und präzise kontrollierbarem Feldverlauf erzeugen. Der Trick ist dabei, das schwingende elektrische Feld eines solchen Lichtblitzes als kurzzeitige Vorspannung zu verwenden. Mit einer extrem schnellen Zeitlupenkamera konnten die Wissenschaftler zudem zeigen, dass die oszillierenden Elektronen elektromagnetische Strahlung vom Mikrowellen- bis zum Ultraviolett-Bereich ausstrahlen.

Zur Erklärung dieser Messdaten entwickelten die Arbeitsgruppen von Prof. Dr. Stephan W. Koch und Prof. Dr. Mackillo Kira an der Universität Marburg gemeinsam mit Prof. Dr. Torsten Meier von der Universität Paderborn ein quantenmechanisches Modell, das die komplexen Vorgänge im Halbleiter nachbildet und die experimentellen Daten eindeutig als dynamische Bloch-Oszillationen identifiziert.

Die Ergebnisse vermitteln einen spektakulären Einblick in eine Quantenwelt, die für künftige Generationen von Halbleiterbauelementen entscheidend werden dürfte. Was vielleicht noch wichtiger ist: Sie zeigen, dass sich elektrische Ströme auf Zeitskalen einzelner Lichtschwingungen kontrollieren lassen. Die Elektronik der Zukunft könnte also auch bei optischen Taktraten funktionieren. Nicht zuletzt emittieren Bloch-Oszillationen ultrakurze Lichtblitze im infraroten Spektralbereich in einer Rekordbandbreite. Diese Lichtquelle dürfte demnach ein wertvolles Forschungsinstrument für die Ultrakurzzeitphysik werden.

Titel der Originalpublikation:
O. Schubert, M. Hohenleutner, F. Langer, B. Urbanek, C. Lange, U. Huttner, D. Golde, T. Meier, M. Kira, S. W. Koch und R. Huber, „Sub-cycle Control of Terahertz High-Harmonic Generation by Dynamical Bloch Oscillations“, Nature Photonics (2014)
Die Publikation im Internet unter:
http://dx.doi.org/10.1038/nphoton.2013.349
Ansprechpartner für Medienvertreter:
Prof. Dr. Rupert Huber
Universität Regensburg
Institut für Experimentelle und Angewandte Physik
Tel.: 0941 943-2070
Rupert.Huber@physik.uni-regensburg.de
und
Prof. Dr. Stephan W. Koch
Philipps-Universität Marburg
Fachbereich Physik
Tel.: 06421 28-21336
Stephan.W.Koch@physik.uni-marburg.de

Alexander Schlaak | idw
Weitere Informationen:
http://www.uni-regensburg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht VLT macht den präzisesten Test von Einsteins Allgemeiner Relativitätstheorie außerhalb der Milchstraße
22.06.2018 | ESO Science Outreach Network - Haus der Astronomie

nachricht Neue Phänomene im magnetischen Nanokosmos
22.06.2018 | Max-Planck-Institut für Intelligente Systeme

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics