Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wenn Elektronen wellenreiten

17.03.2011
Spinpolarisierte Elektronen lassen sich mit Hilfe von akustischen Wellen transportieren. Mit einem raffinierten Versuchsaufbau können PDI-Physiker erfolgen, wie sich dabei der Spin der Elektronen verändert.

Wenn Elektronen durch einen Halbleiter wandern, transportieren sie ihre Ladung. Für noch leistungsfähigere elektronische Bauelemente wollen Physiker einen weiteren Zustand der Elektronen manipulieren und transportieren – deren Spin.


Am Zeitpunkt des Laserpulses ist die Spinpolarisation der Elektronen am größten (dunkelroter Peak). Mit akustischer Welle (rechte Abbildung) zeigen die Elektronen auch nach 5 Nanosekunden und einer durchschnittlichen Entfernung von 20 Mikrometern vom Startpunkt noch Spinpolarisation (gelb). Abb.: PDI

Der Spin ist eine Art quantenmechanischer Drehimpuls um die eigene Achse, der nur zwei Zustände kennt – „up“ und „down“. Sind die Drehachsen aller Elektronen in einem Ensemble parallel und drehen sich alle in die gleiche Richtung, dann ist das Ensemble spinpolarisiert. Würden sich alle Elektronenspins umgekehrt drehen, hätte das Ensemble den entgegengesetzten Spin. Gibt es keine Vorzugsrichtung ist die durchschnittliche Spinpolarisation gleich Null. Ziel dieser Spintronik genannten Forschungsrichtung ist es, spinpolarisierte Elektronen zu erzeugen, zu manipulieren und zu transportieren.

Insbesondere der Transport von spinpolarisierten Elektronen birgt viele Schwierigkeiten. Da ist zunächst das Eigenmagnetfeld, das immer entsteht, wenn Ladungsträger wie Elektronen sich bewegen. Es lenkt den Spin der einzelnen Elektronen im Laufe des Weges aus seiner ursprünglichen Vorzugsrichtung, bis irgendwann überhaupt keine durchschnittliche Spinpolarisation mehr vorliegt. Ein weiteres Problem ist die Wechselwirkung der Elektronen mit Löchern und mit Störstellen, wodurch der Spin ebenfalls verschwindet. Physiker des Paul-Drude-Instituts für Festkörperelektronik schicken nun spinpolarisierte Elektronen auf Wanderschaft durch eine spezielle Halbleiterstruktur, einen sogenannten Galliumarsenid-Quantenfilm und messen, wie sich die Spinpolarisation im Laufe der Zeit verändert. Sie verwenden dafür eine raffinierte Methode, die das Erzeugen und Messen der Elektronen in einem Versuchsaufbau ermöglicht – die sogenannte magnetooptische Kerr-Rotations-Methode.

Zunächst trifft dabei ein ultrakurzer Anrege-Laserpuls auf den Quantenfilm und erzeugt Elektronen und Löcher. Das Licht des Lasers ist zirkular polarisiert; das heißt, dass die Lichtwellen nicht nur auf und ab, sondern auch kreisförmig um die Achse ihrer Ausbreitungsrichtung schwingen. Solches Licht erzeugt im Quantenfilm spin- polarisierte Elektronen. Diese werden von einer akustischen Welle transportiert, wobei Elektronen und Löcher räumlich weit voneinander getrennt sind – die einen sammeln sich im Wellental, die anderen im Wellenberg. „Das verhindert, dass sie schnell wieder rekombinieren, wodurch der Spin verloren gehen würde“, erläutert Dr. Alberto Hernández-Mínguez vom PDI. Die Forscher können so die Lebenszeit der Spinpolarisation erheblich verlängern. Zur Detektion dieses Phänomens wird ein zweiter, linear polarisierter Abtast-Laserpuls verwendet, der mit zeitlicher Verzögerung bezüglich des Anrege-Laserpulses auf die von der akustischen Welle transportierten Elektronen trifft. Da die Lichtpolarisation durch spinpolarisierte Elektronen gedreht wird, können die Physiker ermitteln, wie groß die Spinpolarisation des Elektronen-Ensembles nach unterschiedlichen Entfernungen vom Ausgangspunkt ist. „Wir können so den zeitlichen Verlauf des Abklingens der Spinpolarisation genau verfolgen“, so Hernández-Mínguez.

Die Forscher haben senkrecht zur Ausbreitungsrichtung der akustischen Wellen ein Magnetfeld angelegt und eine weitere interessante Eigenschaft des Spins verfolgen können: Ein äußeres Magnetfeld führt dazu, dass der Spin sich um das Magnetfeld dreht. Sie konnten im zeitlichen Verlauf beobachten, dass die Elektronen auf ihrem Weg von ca. 20 Mikrometern zweimal ihre Polarisationsrichtung ändern und am Ende noch etwa 10 Prozent Spinpolarisation aufweisen.

Appl. Phys. Lett. 97, 242110 (2010)

Kontakt:
Dr. Paulo Ventura Santos, Tel.: 030-20377 221, paulo.santos@pdi-berlin.de
Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5-7, 10117 Berlin

Christine Vollgraf | Forschungsverbund Berlin e.V.
Weitere Informationen:
http://www.pdi-berlin.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neue Anwendungen für Mikrolaser in der Quanten-Nanophotonik
20.07.2018 | Technische Universität Berlin

nachricht Superscharfe Bilder von der neuen Adaptiven Optik des VLT
18.07.2018 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: Rostocker Forscher entwickeln autonom fahrende Kräne

Industriepartner kommen aus sechs Ländern

Autonom fahrende, intelligente Kräne und Hebezeuge – dieser Ingenieurs-Traum könnte in den nächsten drei Jahren zur Wirklichkeit werden. Forscher aus dem...

Im Focus: Superscharfe Bilder von der neuen Adaptiven Optik des VLT

Das Very Large Telescope (VLT) der ESO hat das erste Licht mit einem neuen Modus Adaptiver Optik erreicht, die als Lasertomografie bezeichnet wird – und hat in diesem Rahmen bemerkenswert scharfe Testbilder vom Planeten Neptun, von Sternhaufen und anderen Objekten aufgenommen. Das bahnbrechende MUSE-Instrument kann ab sofort im sogenannten Narrow-Field-Modus mit dem adaptiven Optikmodul GALACSI diese neue Technik nutzen, um Turbulenzen in verschiedenen Höhen in der Erdatmosphäre zu korrigieren. Damit ist jetzt möglich, Bilder vom Erdboden im sichtbaren Licht aufzunehmen, die schärfer sind als die des NASA/ESA Hubble-Weltraumteleskops. Die Kombination aus exquisiter Bildschärfe und den spektroskopischen Fähigkeiten von MUSE wird es den Astronomen ermöglichen, die Eigenschaften astronomischer Objekte viel detaillierter als bisher zu untersuchen.

Das MUSE-Instrument (kurz für Multi Unit Spectroscopic Explorer) am Very Large Telescope (VLT) der ESO arbeitet mit einer adaptiven Optikeinheit namens GALACSI. Dabei kommt auch die Laser Guide Stars Facility, kurz ...

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Stadtklima verbessern, Energiemix optimieren, sauberes Trinkwasser bereitstellen

19.07.2018 | Veranstaltungen

Innovation – the name of the game

18.07.2018 | Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neue Anwendungen für Mikrolaser in der Quanten-Nanophotonik

20.07.2018 | Physik Astronomie

Need for speed: Warum Malaria-Parasiten schneller sind als die menschlichen Abwehrzellen

20.07.2018 | Biowissenschaften Chemie

Die Gene sind nicht schuld

20.07.2018 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics