Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Elektronen finden immer einen (Quanten-) Weg

17.11.2015

Wissenschaftler des Swiss Nanoscience Institute und des Departements Physik der Universität Basel haben erstmals nachgewiesen, wie Elektronen von einem Supraleiter durch einen Quantenpunkt in ein normalleitendes Metall transportiert werden. Dieser Transportprozess durch einen Quantenpunkt wurde bereits in den Neunzigerjahren theoretisch berechnet, doch erst jetzt ist es den Wissenschaftlern der Universität Basel gelungen, die Theorie mit Messungen zu belegen. Das berichten sie in der Fachzeitschrift «Physical Review Letters».

Transporteigenschaften wie etwa die elektrische Leitfähigkeit spielen für die technische Anwendung von neuartigen Materialien und elektronischen Bauteilen eine wichtige Rolle. Völlig neue Phänomene treten auf, wenn man zum Beispiel einen Supraleiter und nanometergrosse Strukturen, sogenannte Quantenpunkte, in einem Bauteil kombiniert.


Erstmals im Experiment nachgewiesen: Transportprozess von Elektronen aus einem Supraleiter (S) durch einen Quantenpunkt in einen Normalleiter (N).

Illustration: Universität Basel, Departement Physik

Forscher der Universität Basel um Professor Christian Schönenberger haben nun einen solchen Quantenpunkt zwischen einem Supraleiter und einem normalleitenden Metall konstruiert, um den Transport von Elektronen zwischen den beiden Komponenten zu untersuchen.

Eigentlich sollte es unmöglich sein, bei kleinen Energien Elektronen vom Supraleiter durch den Quantenpunkt zu transportieren. Zum einen kommen Elektronen in einem Supraleiter nicht einzeln, sondern immer nur zu zweit als sogenannte Cooper-Paare vor, die sich nur durch relativ grosse Energien trennen lassen. Zum anderen ist der Quantenpunkt so klein, dass wegen der elektrischen Abstossung zwischen den Elektronen nur ein Teilchen auf einmal transportiert wird.

Wissenschaftler stellten aber in der Vergangenheit wiederholt fest, dass trotzdem Strom zwischen dem Supraleiter und dem Metall fliesst – es also doch zu einem Elektronentransport durch den Quantenpunkt kommt.

Erster Nachweis des Transportmechanismus durch einen Quantenpunkt

In den Neunzigerjahren wurden auf der Grundlage der Quantenmechanik Theorien entwickelt, die zeigen, dass der Transport von Cooper-Paaren durch einen Quantenpunkt unter bestimmten Bedingungen durchaus möglich ist. Voraussetzung dafür ist, dass das zweite Elektron dem ersten sehr schnell folgt, nämlich innerhalb der Zeit, die in etwa durch die Heisenbergsche Unschärferelation gegeben ist.

Die Wissenschaftler der Universität Basel konnten nun genau dieses Phänomen messen. In ihren Experimenten fanden die Wissenschaftler exakt dieselben diskreten Linien, die theoretisch berechnet wurden. Das Team mit dem Doktoranden Jörg Gramich und seinem Betreuer Dr. Andreas Baumgartner konnte zudem nachweisen, dass der Prozess auch funktioniert, wenn Energie an die Umgebung abgegeben, oder von dort aufgenommen wird.

«Unsere Ergebnisse tragen dazu bei, die Transporteigenschaften von supraleitenden elektronischen Nanostrukturen besser zu verstehen, die für Anwendungen in der Quantentechnologie von grossem Interesse sind», so Dr. Andreas Baumgartner.

Originalbeitrag
J. Gramich, A. Baumgartner, and C. Schönenberger
Resonant and inelastic Andreev tunneling observed on a carbon nanotube quantum dot
Physical Review Letters 115, doi: 10.1103/PhysRevLett.115.216801

Weitere Auskünfte
Dr. Andreas Baumgartner, Universität Basel, Departement Physik, Tel. +41 61 267 39 06, E-Mail: andreas.baumgartner@unibas.ch

Weitere Informationen:

http://dx.doi.org/10.1103/PhysRevLett.115.216801 - Abstract

Reto Caluori | Universität Basel
Weitere Informationen:
http://www.unibas.ch

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Kosmischer Staub auf Ballonfahrt – Experiment zur Planetenentstehung
23.10.2019 | Universität Duisburg-Essen

nachricht Physiker der Saar-Uni wollen neuartige Mikroelektronik entwickeln
23.10.2019 | Universität des Saarlandes

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abbau von Magnesiumlegierung auf der Nanoskala beobachtet

Erstmals konnten ETH-​Forscherinnen und Forscher die Korrosion von Magnesiumlegierungen für biomedizinische Anwendungen auf der Nanoskala beobachten. Dies ist ein wichtiger Schritt, um bessere Vorhersagen darüber zu treffen, wie schnell Implantate im Körper abgebaut werden und so massgeschneiderte Implantatwerkstoffe entwickelt werden können.

Magnesium und seine Legierungen halten vermehrt Einzug in die Medizin: einerseits als Material für Implantate in der Knochenchirurgie wie Schrauben oder...

Im Focus: Researchers watch quantum knots untie

After first reporting the existence of quantum knots, Aalto University & Amherst College researchers now report how the knots behave

A quantum gas can be tied into knots using magnetic fields. Our researchers were the first to produce these knots as part of a collaboration between Aalto...

Im Focus: Hohlraum vermittelt starke Wechselwirkung zwischen Licht und Materie

Forschern ist es gelungen, mithilfe eines mikroskopischen Hohlraumes eine effiziente quantenmechanische Licht-Materie-Schnittstelle zu schaffen. Darin wird ein einzelnes Photon bis zu zehn Mal von einem künstlichen Atom ausgesandt und wieder absorbiert. Das eröffnet neue Perspektiven für die Quantentechnologie, berichten Physiker der Universität Basel und der Ruhr-Universität Bochum in der Zeitschrift «Nature».

Die Quantenphysik beschreibt Photonen als Lichtteilchen. Will man ein einzelnes Photon mit einem einzelnen Atom interagieren lassen, stellt dies aufgrund der...

Im Focus: A cavity leads to a strong interaction between light and matter

Researchers have succeeded in creating an efficient quantum-mechanical light-matter interface using a microscopic cavity. Within this cavity, a single photon is emitted and absorbed up to 10 times by an artificial atom. This opens up new prospects for quantum technology, report physicists at the University of Basel and Ruhr-University Bochum in the journal Nature.

Quantum physics describes photons as light particles. Achieving an interaction between a single photon and a single atom is a huge challenge due to the tiny...

Im Focus: Freiburger Forschenden gelingt die erste Synthese eines kationischen Tetraederclusters in Lösung

Hauptgruppenatome kommen oft in kleinen Clustern vor, die neutral, negativ oder positiv geladen sein können. Das bekannteste neutrale sogenannte Tetraedercluster ist der weiße Phosphor (P4), aber darüber hinaus sind weitere Tetraeder als Substanz isolierbar. Es handelt sich um Moleküle aus vier Atomen, deren räumliche Anordnung einem Tetraeder aus gleichseitigen Dreiecken entspricht. Bisher waren neben mindestens sechs neutralen Versionen wie As4 oder AsP3 eine Vielzahl von negativ geladenen Tetraedern wie In2Sb22– bekannt, jedoch keine kationischen, also positiv geladenen Varianten.

Ein Team um Prof. Dr. Ingo Krossing vom Institut für Anorganische und Analytische Chemie der Universität Freiburg ist es gelungen, diese positiv geladenen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Wiegende Halme auf den Designers‘ Open

23.10.2019 | Veranstaltungen

13. Aachener Technologie- und Innovationsmanagement-Tagung – »Collaborate to Innovate: Making the Net Work«

22.10.2019 | Veranstaltungen

Serienfertigung von XXL-Produkten: Expertentreffen in Hannover

22.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Abbau von Magnesiumlegierung auf der Nanoskala beobachtet

23.10.2019 | Materialwissenschaften

Wiegende Halme auf den Designers‘ Open

23.10.2019 | Veranstaltungsnachrichten

Kosmischer Staub auf Ballonfahrt – Experiment zur Planetenentstehung

23.10.2019 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics