Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie sich Elektronen bewegen

11.08.2010
Um ein Atom oder ein Molekül zu verstehen, müssen Physiker nicht nur deren inneren Aufbau kennen, sondern auch die Bewegung der Elektronen beschreiben können. Aufgrund der extrem hohen Geschwindigkeit war dies bislang nicht möglich. Nun hat ein europäisches Forscher-Team eine solche Mess-Methode entwickelt. Sie berichten darüber in den Physical Review Letters 105, 053001.

Auf der Ebene der Atome und Moleküle funktioniert unsere Alltagsvorstellung von der Welt nicht mehr. Ein Elektron stellen wir uns normalerweise als ein kleines Teilchen vor. „Das ist es auch“, sagt Prof. Marc Vrakking, Direktor am Max-Born Institut für Nichtlineare Optik und Kurzzeitspektroskopie (MBI) in Berlin.

„Um es verstehen zu können, müssen wir es aber manchmal aus der quantenmechanischen Sicht betrachten und uns als Wellenpaket vorstellen.“ Mit dieser abstrakten Vorstellung können die Physiker dann Phänomene erklären, die hinterher wieder mit unserer Alltagsvorstellung übereinstimmen.

Da man die Bewegung eines Elektrons nicht direkt beobachten kann, weil es zu schnell ist, hat das europäische Forscher-Team die Eigenschaften des Elektrons als Wellenpaket gemessen. Sobald sie alle Eigenschaften dieses Wellenpakets kannten, waren sie in der Lage, daraus die komplette Bewegung des Elektrons abzuleiten.

Für das Experiment haben die Forscher das Prinzip der Überlagerung von Wellen verwendet, die sogenannte Interferenz. Sie sind dabei genauso vorgegangen, wie bei Experimenten mit Lichtstrahlen, bei denen regelmäßiges Licht durch zwei Schlitze fällt und auf dem Schirm dahinter helle und dunkle Streifen zu sehen sind. Die Lichtstrahlen verhalten sich dabei wie Wellen – treffen zwei Wellenberge aufeinander, ergibt sich ein heller Streifen, ein Wellenberg und ein Wellental heben sich auf und erscheinen als dunkler Streifen.

Um ein Wellenpaket zu charakterisieren, als das die Physiker das Elektron betrachten, haben sie zunächst ein zweites Wellenpaket erzeugt, analog zu dem zweiten Schlitz für den Lichtstrahl: Mit einem Attosekunden-Laserpuls haben sie dafür ein Elektron aus dem untersuchten Atom herausgelöst. Ein Attosekunden-Laserpuls dauert ein Milliardstel einer Milliardstel Sekunde. Da die Forscher diesen Laserpuls kontrollieren, kennen sie nun die Eigenschaften des heraus gelösten Elektrons – und damit auch des Wellenpakets, als das sie es sich vorstellen. Überlagern sie nun dieses erzeugte Wellenpaket mit dem unbekannten Wellenpaket, können sie aus dem Interferenzmuster auf die unbekannten Eigenschaften schließen.

Die Methode erklärt Matthias Kling vom Labor für Attosekundenphysik am Max-Planck-Institut für Quantenoptik: „Für ein aussagekräftiges Interferenzmuster mussten wir das unbekannte Wellenpaket zunächst auf das gleiche Energieniveau wie das von uns zuvor erzeugte bekannte Wellenpaket anheben, welches durch den Attosekunden-Laserpuls viel mehr Energie hat als das unbekannte Wellenpaket in seinem ursprünglichen Zustand. Um diese Interferenz herzustellen, haben wir einen Infrarot-Laserpuls verwendet.“ Bei sehr großen Energieunterschieden ergibt sich kein echtes Interferenzmuster – das wäre so, als könnte man bei den Lichtstrahlen noch erkennen, durch welchen Schlitz das Licht gefallen ist. Durch die Überlagerung der beiden gleichwertigen Wellenpakete konnten die Forscher das bekannte Muster herausrechnen und erhielten so das unbekannte Muster.

Um ein Wellenpaket zu charakterisieren, müssen die Physiker dessen verschiedene Zustände kennen und wie groß die Anteile dieser Zustände am Wellenpaket sind. „Wir nennen das die Bevölkerung der Zustände“, sagt Vrakking. Außerdem müssen die Phasen der Wellen bekannt sein, also die zeitliche Verschiebung gegeneinander. Wenn sie diese Faktoren kennen, kehren die Wissenschaftler wieder in unsere ganz normale Vorstellungswelt zurück und beschreiben die komplette Bewegung der Elektronen, die man sich dann wieder als Teilchen denken darf.

Originalveröffentlichung:
Attosecond Electron Spectroscopy Using a Novel Interferometric Pump-Probe Technique J. Mauritsson, T. Remetter, M. Swoboda, K. Klunder, A. L’Huillier, K. J. Schafer, O. Ghafur, F. Kelkensberg, W. Siu, P. Johnsson, M. J. J. Vrakking, I. Znakovskaya, T. Uphues, S. Zherebtsov, M. F. Kling, F. Le´pine, E. Benedetti, F. Ferrari, G. Sansone, and M. Nisoli. Physical Review Letters 105, 053001 (2010) 30 July 2010

Kontakt:

Prof. Dr. Marc Vrakking
Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie
Tel.: +49 30 6392-1200
Fax: +49 30 6392-1209
E-Mail: vrakking@mbi-berlin.de
http://www.mbi-berlin.de
Prof. Dr. Matthias Kling
Max-Planck-Institut für Quantenoptik, Garching
Max Planck Forschungsgruppe „Attosecond Imaging“
Tel.: +49 89 32905-234 Fax: +49 89 32905-649
E-Mail: matthias.kling@mpq.mpg.de
http://www.attosecondimaging.de

Christine Vollgraf | idw
Weitere Informationen:
http://www.attosecondimaging.de
http://www.mbi-berlin.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neue Methode verpasst Mikroskop einen Auflösungsschub
10.12.2018 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

nachricht Supercomputer ohne Abwärme
07.12.2018 | Universität Konstanz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue Methode verpasst Mikroskop einen Auflösungsschub

Verspiegelte Objektträger ermöglichen jetzt deutlich schärfere Bilder / 20fach bessere Auflösung als ein gewöhnliches Lichtmikroskop - Zwei Forschungsteams der Universität Würzburg haben dem Hochleistungs-Lichtmikroskop einen Auflösungsschub verpasst. Dazu bedampften sie den Glasträger, auf dem das beobachtete Objekt liegt, mit maßgeschneiderten biokompatiblen Nanoschichten, die einen „Spiegeleffekt“ bewirken. Mit dieser einfachen Methode konnten sie die Bildauflösung signifikant erhöhen und einzelne Molekülkomplexe auflösen, die sich mit einem normalen Lichtmikroskop nicht abbilden lassen. Die Studie wurde in der NATURE Zeitschrift „Light: Science and Applications“ veröffentlicht.

Die Schärfe von Lichtmikroskopen ist aus physikalischen Gründen begrenzt: Strukturen, die näher beieinander liegen als 0,2 tausendstel Millimeter, verschwimmen...

Im Focus: Supercomputer ohne Abwärme

Konstanzer Physiker eröffnen die Möglichkeit, Supraleiter zur Informationsübertragung einzusetzen

Konventionell betrachtet sind Magnetismus und der widerstandsfreie Fluss elektrischen Stroms („Supraleitung“) konkurrierende Phänomene, die nicht zusammen in...

Im Focus: Drei Nervenzellen reichen, um eine Fliege zu steuern

Uns wirft so schnell nichts um. Eine Fruchtfliege kann dagegen schon ein kleiner Windstoß vom Kurs abbringen. Drei große Nervenzellen in jeder Hälfte des Fliegenhirns reichen jedoch aus, um die Fliege mit Hilfe visueller Signale wieder auf Kurs zu bringen.

Bewegen wir uns vorwärts, zieht die Umwelt in die entgegengesetzte Richtung an unseren Augen vorbei. Drehen wir uns, verschiebt sich das Bild der Umwelt im...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Drei Komponenten auf einem Chip

Wissenschaftlern der Universität Stuttgart und des Karlsruher Institutes für Technologie (KIT gelingt wichtige Weiterentwicklung auf dem Weg zum Quantencomputer

Quantencomputer sollen bestimmte Rechenprobleme einmal sehr viel schneller lösen können als ein klassischer Computer. Einer der vielversprechendsten Ansätze...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Eine Norm für die Reinheitsbestimmung aller Medizinprodukte

10.12.2018 | Veranstaltungen

Fachforum über intelligente Datenanalyse

10.12.2018 | Veranstaltungen

Plastics Economy Investor Forum: Treffpunkt für Innovationen

10.12.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Klein und vielseitig: Schlüsselorganismen im marinen Stickstoffkreislauf nutzen Cyanat und Harnstoff

10.12.2018 | Studien Analysen

Ungesundes Sitzen vermeiden: Stuhl erkennt Sitzposition und motiviert zur Änderung der Körperhaltung

10.12.2018 | Energie und Elektrotechnik

Eine Norm für die Reinheitsbestimmung aller Medizinprodukte

10.12.2018 | Veranstaltungsnachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics