Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Eisriesen im Labor: Kunststoff hilft HZDR-Forschern, Planeten besser zu verstehen

25.03.2019

In Planeten wie Neptun oder Uranus könnte es deutlich weniger freien Wasserstoff geben als angenommen. Um die hohen Temperaturen und Drücke im Inneren der Eisriesen nachzuahmen, haben Forscher des Helmholtz-Zentrums Dresden-Rossendorf (HZDR) Schockwellen durch zwei Arten Kunststoff getrieben und mit ultrastarken Röntgenlasern die Wirkung auf die Proben untersucht. Das unerwartete Ergebnis: Statt aufzubrechen, hielt die Kristallstruktur einer Kunststoffart dem extremen Druck stand. Weil das hochdichte Innere der Planeten ähnliche Bestandteile wie der Kunststoff aufweist, müssen Planetenmodelle teilweise neu überdacht werden, wie die Forscher in der Zeitschrift Scientific Reports berichten.

Kohlenstoff und Wasserstoff gehören zu den häufigsten Elementen im Universum. Die Eisriesen Neptun und Uranus bestehen zu großen Teilen aus diesen Zutaten – beispielsweise in Form von Methangas.


Selbst unter extrem hohem Druck, wie im Inneren von Neptun oder Uranus, gibt es stabile Kristallstrukturen aus Kohlenstoff (orange) und Wasserstoff (grau). Diese Entdeckung der HZDR-Forscher zeigt neue Möglichkeiten auf, wie die innere Struktur der Eisriesen beschaffen sein könnte.

Quelle: HZDR / J. Vorberger

Tiefer im Inneren der Planeten bilden sich durch den hohen Druck komplexere Strukturen aus Kohlenstoff und Wasserstoff. Ganz innen befindet sich ein fester Kern. Welche Zustände die Materie dazwischen annimmt, ist eine der großen Fragen der Planetenforschung.

Um den Aufbau der Eisriesen besser zu verstehen, hat ein internationales Team um die beiden HZDR-Forscher Dr. Nicholas Hartley und Dr. Dominik Kraus zwei Arten Kunststoff in einem Laborexperiment näher untersucht: Polystyrol und Polyethylen.

Diese Materialien ähneln in ihrer Chemie dem Kohlenwasserstoff im Inneren der Planeten. Im SLAC National Accelerator Laboratory in den USA setzten die Wissenschaftler die Proben Bedingungen aus, wie sie etwa zehntausend Kilometer unter der Oberfläche von Neptun und Uranus vorhergesagt werden. Dort ist der Druck fast so hoch wie im Kern der Erde und zwei Millionen Mal höher als der Luftdruck auf der Erdoberfläche.

Extrem hohe Drücke

Die Forscher erwarteten, dass sich in beiden Materialien bei den sehr hohen Temperaturen und Drücken alle kristallartigen Strukturen auflösen würden. Tatsächlich beobachteten sie aber für das Polyethylen selbst bei sehr hohem Druck noch stabile Verbindungen von Kohlenstoff und Wasserstoff.

„Dieses Ergebnis hat uns sehr überrascht“, meint Hartley. „Wir haben nicht geglaubt, dass der unterschiedliche Anfangszustand so einen großen Unterschied unter Hochdruck macht. Bis vor kurzem konnten wir diese Materialien nicht untersuchen, weil die Röntgenquellen nicht lichtstark genug waren. Wir waren die ersten, die das überhaupt für möglich gehalten haben – und es war möglich.“

Da sich die extremen Bedingungen im Inneren der Eisriesen auf der Erde nur als Momentaufnahme simulieren lassen, benötigen die Forscher blitzschnelle Messmethoden. Diese gibt es weltweit an wenigen ultraschnellen Röntgenlasern, an denen Zeit für Messungen rar und begehrt ist.

Kraus und Hartley gelang es, ihrem Team insgesamt drei Mal zwölf Stunden für ihre Experimente zu sichern. Die Forscher nutzten jede Minute, um möglichst viele Messdurchgänge durchzuführen. Der eigentliche Schlüsselmoment, in dem sie die Proben mit dem Röntgenlaser beschießen, dauert dabei nur wenige Milliardstel Sekunden.

Eine unerwartete Struktur erscheint
Bereits während der Experimente konnten die Forscher erste Ergebnisse erkennen: „Wir waren sehr aufgeregt, weil sich für Polystyrol wie erhofft diamantartige Strukturen aus Kohlenstoff bildeten. Für Polyethylen aber sahen wir bei den in diesem Experiment erreichten Bedingungen keine Diamanten.

Stattdessen war da eine neue Struktur, die wir uns anfangs nicht erklären konnten“, erinnert sich Hartley. Polyethylen in dieser Form beobachteten sie zuvor nur bei einem Fünftel des Drucks und der Raumtemperatur.

Die Entdeckung des Forscherteams zeigt, wie wichtig es ist, die Chemie und die Temperatur- und Druckbedingungen im Inneren der Eisriesen besser zu kennen, um deren Aufbau und physikalische Eigenschaften zu verstehen. Modelle für Uranus und Neptun gehen davon aus, dass die ungewöhnlichen Magnetfelder dieser Planeten durch den freien Wasserstoff entstehen.

Die neuen Ergebnisse legen jedoch nahe, dass es weniger freien Wasserstoff geben dürfte als bislang angenommen. Im nächsten Schritt wollen die Forscher für ihre Experimente Sauerstoff zu der Mischung hinzufügen, um der Chemie im Inneren der Planeten noch besser zu entsprechen.

Neben den HZDR-Forschern waren an den Untersuchungen auch Wissenschaftler des SLAC National Accelerator Laboratory, der Osaka University, der TU Dresden, der TU Darmstadt, des GSI Helmholtzzentrum für Schwerionenforschung, des Lawrence Livermore National Laboratory, der University of California in Berkeley, der University of Warwick, des European XFEL, des LULI an der École Polytechnique in Paris und der Universität Rostock beteiligt.

Publikation:
N.J. Hartley, S. Brown, T.E. Cowan, E. Cunningham, T. Döppner, R.W. Falcone, L.B. Fletcher, S. Frydrych, E. Galtier, E.J. Gamboa, A. Laso Garcia, D.O. Gericke, S.H. Glenzer, E. Granados, P.A. Heimann, H.J. Lee, M.J. MacDonald, A.J. MacKinnon, E.E. McBride, I. Nam, P. Neumayer, A. Pak, A. Pelka, I. Prencipe, A. Ravasio, M. Rödel, K. Rohatsch, A.M. Saunders, M. Schölmerich, M. Schörner, A.K. Schuster, P. Sun, T. van Driel, J. Vorberger, D. Kraus: Evidence for crystalline structure in dynamically compressed polyethylene up to 200 GPa, in Scientific Reports, 2019 (DOI: 10.1038/s41598-019-40782-5)

Weitere Informationen:
Dr. Nicholas Hartley
Institut für Strahlenphysik am HZDR
Tel.: +49 351 260-3634 | E-Mail: n.hartley@hzdr.de

Medienkontakt:
Simon Schmitt | Wissenschaftsredakteur
Tel.: +49 351 260-3400 | Mobil: +49 175 874 2865 | E-Mail: s.schmitt@hzdr.de
Helmholtz-Zentrum Dresden-Rossendorf (HZDR)
Bautzner Landstr. 400, 01328 Dresden | www.hzdr.de

Das Helmholtz-Zentrum Dresden-Rossendorf (HZDR) forscht auf den Gebieten Energie, Gesundheit und Materie. Folgende Fragestellungen stehen hierbei im Fokus:
• Wie nutzt man Energie und Ressourcen effizient, sicher und nachhaltig?
• Wie können Krebserkrankungen besser visualisiert, charakterisiert und wirksam behandelt werden?
• Wie verhalten sich Materie und Materialien unter dem Einfluss hoher Felder und in kleinsten Dimensionen?
Das HZDR entwickelt und betreibt große Infrastrukturen, die auch von externen Messgästen genutzt werden: Ionenstrahlzentrum, Hochfeld-Magnetlabor Dresden und ELBE-Zentrum für Hochleistungs-Strahlenquellen.
Es ist Mitglied der Helmholtz-Gemeinschaft, hat fünf Standorte (Dresden, Freiberg, Grenoble, Leipzig, Schenefeld bei Hamburg) und beschäftigt knapp 1.200 Mitarbeiter – davon etwa 500 Wissenschaftler inklusive 150 Doktoranden.

Wissenschaftliche Ansprechpartner:

Dr. Nicholas Hartley
Institut für Strahlenphysik am HZDR
Tel.: +49 351 260-3634 | E-Mail: n.hartley@hzdr.de

Originalpublikation:

N.J. Hartley, S. Brown, T.E. Cowan, E. Cunningham, T. Döppner, R.W. Falcone, L.B. Fletcher, S. Frydrych, E. Galtier, E.J. Gamboa, A. Laso Garcia, D.O. Gericke, S.H. Glenzer, E. Granados, P.A. Heimann, H.J. Lee, M.J. MacDonald, A.J. MacKinnon, E.E. McBride, I. Nam, P. Neumayer, A. Pak, A. Pelka, I. Prencipe, A. Ravasio, M. Rödel, K. Rohatsch, A.M. Saunders, M. Schölmerich, M. Schörner, A.K. Schuster, P. Sun, T. van Driel, J. Vorberger, D. Kraus: Evidence for crystalline structure in dynamically compressed polyethylene up to 200 GPa, in Scientific Reports, 2019 (DOI: 10.1038/s41598-019-40782-5)

Weitere Informationen:

https://www.hzdr.de/presse/eisriesen_labor

Simon Schmitt | Helmholtz-Zentrum Dresden-Rossendorf

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht ESO-Teleskop sieht die Oberfläche des schwächelnden Beteigeuze
14.02.2020 | Max-Planck-Institut für Astronomie

nachricht Mit neuer Technik im extrem-ultravioletten Lichtbereich beobachten Forschende Quanteninterferenzen in Echtzeit
14.02.2020 | Albert-Ludwigs-Universität Freiburg im Breisgau

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Transparente menschliche Organe ermöglichen dreidimensionale Kartierungen auf Zellebene

Erstmals gelang es Wissenschaftlerinnen und Wissenschaftlern, intakte menschliche Organe durchsichtig zu machen. Mittels mikroskopischer Bildgebung konnten sie die zugrunde liegenden komplexen Strukturen der durchsichtigen Organe auf zellulärer Ebene sichtbar machen. Solche strukturellen Kartierungen von Organen bergen das Potenzial, künftig als Vorlage für 3D-Bioprinting-Technologien zum Einsatz zu kommen. Das wäre ein wichtiger Schritt, um in Zukunft künstliche Alternativen als Ersatz für benötigte Spenderorgane erzeugen zu können. Dies sind die Ergebnisse des Helmholtz Zentrums München, der Ludwig-Maximilians-Universität (LMU) und der Technischen Universität München (TUM).

In der biomedizinischen Forschung gilt „seeing is believing“. Die Entschlüsselung der strukturellen Komplexität menschlicher Organe war schon immer eine große...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Skyrmionen mögen es heiß – Spinstrukturen auch bei hohen Temperaturen steuerbar

Neue Spinstrukturen für zukünftige Magnetspeicher: Die Untersuchung der Temperaturabhängigkeit des Skyrmion-Hall-Effekts liefert weitere Einblicke in mögliche neue Datenspeichergeräte

Ein gemeinsames Forschungsprojekt der Johannes Gutenberg-Universität Mainz (JGU) und des Massachusetts Institute of Technology (MIT) hat einen weiteren...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: Nanopartikel können Zellen verändern

Nanopartikel dringen leicht in Zellen ein. Wie sie sich dort verteilen und was sie bewirken, zeigen nun erstmals hochaufgelöste 3D-Mikroskopie-Aufnahmen an BESSY II. So reichern sich bestimmte Nanopartikel bevorzugt in bestimmten Organellen der Zelle an. Dadurch kann der Energieumsatz in der Zelle steigen. „Die Zelle sieht aus wie nach einem Marathonlauf, offensichtlich kostet es Energie, solche Nanopartikel aufzunehmen“, sagt Hauptautor James McNally.

Nanopartikel sind heute nicht nur in Kosmetikprodukten, sondern überall, in der Luft, im Wasser, im Boden und in der Nahrung. Weil sie so winzig sind, dringen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

4. Fachtagung Fahrzeugklimatisierung am 13.-14. Mai 2020 in Stuttgart

10.02.2020 | Veranstaltungen

Alternative Antriebskonzepte, technische Innovationen und Brandschutz im Schienenfahrzeugbau

07.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

„Kiss and Run“ zur Abfallverwertung in der Zelle

14.02.2020 | Biowissenschaften Chemie

Kurze Impulse mit großer Wirkung

14.02.2020 | Biowissenschaften Chemie

ESO-Teleskop sieht die Oberfläche des schwächelnden Beteigeuze

14.02.2020 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics