Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Eisenreiche Scheibchen im Halbleiter: HZDR-Forscher erzeugen ungewöhnliche Kristallstruktur

07.12.2018

Schaut man sich das Gitter von Kristallen an, herrscht in vielen Fällen eine ausgesprochene Symmetrie: Egal wohin man blickt – die Atome sind in jede Richtung gleich angeordnet. Dieses Verhalten sollte auch ein Kristall zeigen, den Physiker aus Deutschland und Polen mit einem speziellen Verfahren hergestellt hatten: eine Verbindung aus dem Halbleiter Indiumarsenid, gespickt mit etwas Eisen. Doch das Material hielt sich nicht an die perfekte Symmetrie. Das Eisen bildete im Kristall zweidimensionale, scheibenförmige Strukturen aus, die dem Material eine prägnante Eigenschaft verliehen: Es wurde magnetisch. Langfristig könnte das Ergebnis für das Verständnis von Supraleitern wichtig sein.

„Wir haben in unserem Ionenstrahlzentrum schnelle Eisen-Ionen auf einen Kristall aus Indiumarsenid geschossen, einem Halbleiter aus Indium und Arsen“, erläutert Dr. Shengqiang Zhou, Physiker am Institut für Ionenstrahlphysik und Materialforschung des Helmholtz-Zentrums Dresden-Rossendorf (HZDR).


Anders als erwartet bildete die Verbindung aus Indiumarsenid und Eisen – hier als schwarze Streifen zu erkennen – in der Kristalloberfläche entlang einer Achse eine lamellenartige Struktur.

HZDR / S. Zhou

„Dabei drang das Eisen etwa 100 Nanometer tief in die Kristalloberfläche ein.“ Die Eisen-Ionen blieben dabei in der Minderheit – sie machten nur wenige Prozent in der dünnen Oberflächenschicht aus. Mit einem Laser feuerten die Forscher anschließend Lichtpulse auf den Kristall. Da die Blitze ultrakurz waren, schmolz nur die Oberfläche auf.

„Für viel weniger als eine Mikrosekunde waren die obersten 100 Nanometer eine heiße Suppe, wogegen der Kristall darunter kalt und schön geordnet blieb“, beschreibt Zhou das Resultat.

Bereits einen Wimpernschlag nach dem Laserbeschuss kühlte die Kristalloberfläche wieder ab. Dabei geschah das Ungewöhnliche: Zwar nahm die Oberfläche grundsätzlich wieder die Gitterstruktur von Indiumarsenid ein.

Aber die Abkühlung verlief derart rasant, dass den Eisenatomen nicht genügend Zeit blieb, um reguläre Gitterplätze im Kristall zu finden und zu besetzen. Stattdessen taten sich die Metall-Atome mit ihresgleichen zusammen und bildeten bemerkenswerte Strukturen – zweidimensionale, parallel angeordnete Scheibchen.

„Dass sich die Eisenatome in dieser Weise angeordnet haben, war eine Überraschung“, sagt Shengqiang Zhou. „Wir konnten somit erstmals weltweit solch eine lamellenartige Struktur erzeugen.“

Als die Experten das neugeschaffene Material näher untersuchten, stellten sie fest, dass es durch den Einfluss des Eisens magnetisch geworden war. Außerdem gelang es den Forschern aus Polen und Deutschland, den Prozess theoretisch zu erfassen und per Computer zu simulieren.

„Die Eisen-Atome ordneten sich deshalb zu einer Scheibchenstruktur, weil dies der energetisch günstigste Zustand war, den sie in der Kürze der Zeit einnehmen konnten“, fasst Prof. Tomasz Dietl vom internationalen Forschungszentrum MagTop der Polnischen Akademie der Wissenschaften das Resultat der Berechnungen zusammen.

Relevant könnte das Ergebnis zum Beispiel für das Verständnis von Supraleitern sein – einer Stoffklasse, die elektrischen Strom völlig verlustfrei leiten kann. „Lamellenartige Strukturen finden sich auch in vielen supraleitenden Materialien“, erläutert Zhou. „Unsere Materialverbindung könnte somit als Modellsystem dienen und dabei helfen, das Verhalten von Supraleitern besser zu verstehen.“

Dadurch lassen sich dann vielleicht auch deren Eigenschaften optimieren: Damit Supraleiter funktionieren, muss man sie heute auf vergleichsweise tiefe Temperaturen von beispielsweise minus 200 Grad Celsius kühlen. Das Ziel vieler Fachleute ist, diese Temperaturen schrittweise zu erhöhen – bis hin zu einem Traummaterial, das bereits bei gewöhnlichen Umgebungstemperaturen seinen elektrischen Widerstand verliert.

_Publikation:
Y. Yuan, R. Hübner, M. Birowska, C. Xu, M. Wang, S. Prucnal, R. Jakiela, K. Potzger, R. Böttger, S. Facsko, J.A. Majewski, M. Helm, M. Sawicki, S. Zhou, T. Dietl: Nematicity of correlated systems driven by anisotropic chemical phase separation, in Physical Review Materials, 2018 (DOI: 10.1103/PhysRevMaterials.2.114601)

_Weitere Informationen:
Dr. Shengqiang Zhou
Institut für Ionenstrahlphysik und Materialforschung am HZDR
Tel.: +49 351 260-2484 | E-Mail: s.zhou@hzdr.de

_Medienkontakt:
Simon Schmitt | Wissenschaftsredakteur
Tel.: +49 351 260-3400 | E-Mail: s.schmitt@hzdr.de
Helmholtz-Zentrum Dresden-Rossendorf (HZDR)
Bautzner Landstr. 400, 01328 Dresden | www.hzdr.de

Das Helmholtz-Zentrum Dresden-Rossendorf (HZDR) forscht auf den Gebieten Energie, Gesundheit und Materie. Folgende Fragestellungen stehen hierbei im Fokus:
• Wie nutzt man Energie und Ressourcen effizient, sicher und nachhaltig?
• Wie können Krebserkrankungen besser visualisiert, charakterisiert und wirksam behandelt werden?
• Wie verhalten sich Materie und Materialien unter dem Einfluss hoher Felder und in kleinsten Dimensionen?
Das HZDR entwickelt und betreibt große Infrastrukturen, die auch von externen Messgästen genutzt werden: Ionenstrahlzentrum, Hochfeld-Magnetlabor Dresden und ELBE-Zentrum für Hochleistungs-Strahlenquellen.
Es ist Mitglied der Helmholtz-Gemeinschaft, hat fünf Standorte (Dresden, Freiberg, Grenoble, Leipzig, Schenefeld bei Hamburg) und beschäftigt knapp 1.200 Mitarbeiter – davon etwa 500 Wissenschaftler inklusive 150 Doktoranden.

Wissenschaftliche Ansprechpartner:

Dr. Shengqiang Zhou
Institut für Ionenstrahlphysik und Materialforschung am HZDR
Tel.: +49 351 260-2484 | E-Mail: s.zhou@hzdr.de

Originalpublikation:

Y. Yuan, R. Hübner, M. Birowska, C. Xu, M. Wang, S. Prucnal, R. Jakiela, K. Potzger, R. Böttger, S. Facsko, J.A. Majewski, M. Helm, M. Sawicki, S. Zhou, T. Dietl: Nematicity of correlated systems driven by anisotropic chemical phase separation, in Physical Review Materials, 2018 (DOI: 10.1103/PhysRevMaterials.2.114601)

Weitere Informationen:

https://www.hzdr.de/presse/eisen_halbleiter

Simon Schmitt | Helmholtz-Zentrum Dresden-Rossendorf

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wuppertaler Forscher messen vom Weltraum aus die Temperatur der oberen Atmosphäre
18.01.2019 | Bergische Universität Wuppertal

nachricht Wie Moleküle im Laserfeld wippen
17.01.2019 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Fliegende optische Katzen für die Quantenkommunikation

Gleichzeitig tot und lebendig? Max-Planck-Forscher realisieren im Labor Erwin Schrödingers paradoxes Gedankenexperiment mithilfe eines verschränkten Atom-Licht-Zustands.

Bereits 1935 formulierte Erwin Schrödinger die paradoxen Eigenschaften der Quantenphysik in einem Gedankenexperiment über eine Katze, die gleichzeitig tot und...

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Implantate aus Nanozellulose: Das Ohr aus dem 3-D-Drucker

Aus Holz gewonnene Nanocellulose verfügt über erstaunliche Materialeigenschaften. Empa-Forscher bestücken den biologisch abbaubaren Rohstoff nun mit zusätzlichen Fähigkeiten, um Implantate für Knorpelerkrankungen mittels 3-D-Druck fertigen zu können.

Alles beginnt mit einem Ohr. Empa-Forscher Michael Hausmann entfernt das Objekt in Form eines menschlichen Ohrs aus dem 3-D-Drucker und erklärt: «Nanocellulose...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Smarte Sensorik für Mobilität und Produktion 4.0 am 07. Februar 2019 in Oldenburg

18.01.2019 | Veranstaltungen

16. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

17.01.2019 | Veranstaltungen

Erstmalig in Nürnberg: Tagung „HR-Trends 2019“

17.01.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Zeitwirtschafts- und Einsatzplanungsprozesse effizient und transparent gestalten mit dem Workforce Management System der GFOS

18.01.2019 | Unternehmensmeldung

Der Schlaue Klaus erlaubt keine Fehler

18.01.2019 | Informationstechnologie

Neues Verfahren zur Grundwassersanierung: Mit Eisenoxid gegen hochgiftige Stoffe

18.01.2019 | Verfahrenstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics