Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Eisen und Titan in der Atmosphäre eines Exoplaneten entdeckt

16.08.2018

Forschende der Universitäten Bern und Genf haben erstmals in der Atmosphäre eines Exoplaneten Eisen und Titan nachgewiesen. Die Existenz dieser Elemente in Gasform wurde von einem Team um den Berner Astronomen Kevin Heng theoretisch vorausgesagt und konnte nun von Genfern Astronominnen und Astronomen bestätigt werden.

Planeten in anderen Sonnensystemen, sogenannte Exoplaneten, können sehr nah um ihren Stern kreisen. Wenn dieser Stern viel heisser ist als unsere Sonne, dann kommt es zu einem einzigartigen Phänomen: Der Exoplanet wird selber so heiss wie ein Stern. Weil solche Gas-Riesen dem Jupiter physikalisch ähnlich sind, werden sie auch «Hot Jupiters» oder «Ultra-hot Jupiters» genannt.


Künstlerische Ansicht eines Sonnenuntergangs über KELT-9b. Unter dieser sengenden Sonne leuchtet die Atmosphäre des Planeten rötlich, und Schwermetalle wie Eisen und Titan verdampfen.

© Denis Bajram

KELT-9 ist ein Stern, der sich 650 Lichtjahre von der Erde entfernt im Sternbild Cygnus (Schwan) befindet. Mit einer Temperatur von über 10’000 °C ist er fast doppelt so heiss wie die Sonne. KELT-9 wird von einem riesigen Gasplaneten, dem «Ultra-hot Jupiter» KELT-9b, umkreist, der seinem Zentralstern 30 Mal näher ist als die Erde der Sonne.

Aufgrund dieser Nähe umkreist der Exoplanet seinen Stern in 36 Stunden, und er wird auf eine Temperatur von über 4’000 °C erhitzt. Somit ist der Planet KELT-9b zwar nicht so heiss wie die Sonne, aber heisser als viele andere Sterne.

Wie die Atmosphäre eines solchen «Hot Jupiter» aussehen könnte, und wie sie sich unter solchen Bedingungen entwickeln konnte, war bislang unbekannt. Nun konnte ein Team unter der Leitung der Universität Genf, das sich mit Wissenschaftlerinnen und Wissenschaftler der Universität Bern zusammengeschlossen hat, dank einer Simulation der Berner Forschergruppe Eisen- und Titanatome in der Atmosphäre des «Ultra-hot Jupiters» KELT-9b nachweisen. Die Entdeckung wurde im Journal «Nature» publiziert.

Simulation von Berner Team als Anstoss

Um die Atmosphäre des Exoplaneten KELT-9b zu simulieren haben Forschende der Universität Bern, die Teil des Nationalen Forschungsschwerpunktes PlanetS sind, kürzlich eine Studie durchgeführt. Die Ergebnisse werden im «Astrophysical Journal» veröffentlicht.

«Die Ergebnisse dieser Simulationen zeigten, dass die meisten Moleküle in der Atmosphäre von KELT-9b in atomarer Form vorliegen sollten», erklärt der Co-Autor der Studie Kevin Heng, Direktor und Professor am Center for Space and Habitabilty (CSH) an der Universität Bern und Mitglied von PlanetS.

«Denn bei den extrem hohen Temperaturen auf KELT-9b finden Kollisionen zwischen den Teilchen statt, die die Bindungen zwischen den Molekülen aufbrechen und die dabei entstehenden Atome sogar teilweise ionisieren», so Erstautor Daniel Kitzmann vom CSH weiter. Die Simulationen des Berner Teams sagten auch voraus, dass es möglich sein sollte, gasförmiges atomares Eisen in der Atmosphäre des Planeten KELT-9b mit Hilfe von Teleskopen zu beobachten.

Licht enthüllt die chemischen Komponenten der Atmosphäre

Gleichzeitig zu den Untersuchungen des Berner Teams beobachteten Forschende des PlanetS an der Universität Genf den Planeten KELT-9b während eines Transits vor seinem Zentralstern KELT-9. Ein winziger Bruchteil des Lichts des Sterns KELT-9 wird während dieses Transits durch die Atmosphäre des Planeten KELT-9b gefiltert.

Wird nun dieses gefilterte Licht analysiert, können daraus Schlüsse gezogen werden über die chemische Zusammensetzung der Atmosphäre des Planeten KELT-9b. Dies ist möglich dank einem Spektrographen, der das weisse Licht in seine Komponenten aufteilt, das sogenannte Spektrum. Die Genfer Forschenden nutzten für ihre Beobachtungen den HARPS-Nord-Spektrographen in La Palma, der in Genf gebaut worden war.

Wie von Hengs Team vorhergesagt, hinterlassen Eisenatome, falls sie in der Atmosphäre von KELT-9b vorhanden sind, einen gut erkennbaren «Fingerabdruck» im Spektrum. Die Genfer Forschenden von PlanetS entdeckten ein starkes Signal, das demjenigen von Eisendampf entspricht.

«Mit den theoretischen Vorhersagen von Hengs Team brauchten wir nur noch einer Art Schatzkarte zu folgen», sagt Jens Hoeijmakers, Forscher an den Universitäten Bern und Genf und Erstautor der Studie in «Nature». «Als wir uns intensiver mit den Daten beschäftigt haben, fanden wir sogar noch mehr», fügt er hinzu. Neben den Atomen wiesen die Forscher in der Atmosphäre von KELT-9b ausserdem das Vorhandensein von sowohl Eisen als auch Titan in ionisierter Form nach.

Bisher wurde angenommen, dass viele Exoplaneten, die sich in einer ähnlichen Umgebung wie KELT-9b befanden, vollständig verdampft sind. «KELT-9b ist wahrscheinlich massiv genug, um der totalen Verdunstung zu widerstehen» sagt Hoeijmakers. Die in «Nature» veröffentlichte Studie zeigt den starken Einfluss der Sternenstrahlung auf die Zusammensetzung der Atmosphäre von Exoplaneten.

Die Beobachtungen bestätigen, dass die hohen Temperaturen, die auf dem Planeten KELT-9b herrschen, die meisten Moleküle in ihre Atome aufspalten, also auch die Moleküle, die Eisen oder Titan enthalten. Bei kühleren Exoplaneten werden Eisen- oder Titan-Atome in gasförmigen Oxiden oder in kondensierter Form als Staubpartikel vermutet, wo sie schwer zu erkennen sind.

Einig sind sich die Forschenden, dass der Planet KELT-9b ein einzigartiges Labor ist, um zu analysieren, wie sich Atmosphären von Planeten unter intensiver Sternenstrahlung entwickeln können. Kevin Heng sagt: «Für mich sind die beiden Studien ein tolles Ergebnis des PlanetS-Netzwerks, das eine enge Zusammenarbeit zwischen Theoretikern wie uns und Astronominnen und Astronomen an der Universität Genf fördert.»

Wissenschaftliche Ansprechpartner:

Prof. Dr. Kevin Heng (Englisch)
Universität Bern, Center for Space and Habitability (CSH)
Telefon direkt: +41 31 631 59 18
Email: kevin.heng@csh.unibe.ch

Dr. Daniel Kitzmann (Deutsch)
Universität Bern, Center for Space and Habitability (CSH)
Telefon direkt: +41 31 631 39 92
Email: daniel.kitzmann@csh.unibe.ch

Jens Hoeijmakers (Englisch), Postdoc
Département d’astronomie, Faculté des sciences, Université de Genève
Telefon direkt: +41 22 379 2416
Email: jens.hoeijmakers@unige.ch

Originalpublikation:

Daniel Kitzmann, Kevin Heng et al.: The peculiar atmospheric chemistry of KELT-9b, accepted in The Astrophysical Journal.

H. Jens Hoeijmakers, David Ehrenreich, Kevin Heng, Daniel Kitzmann, Simon L. Grimm, Romain Allart, Russell Deitrick, Aurélien Wyttenbach, Maria Oreshenko, Lorenzo Pino, Paul B. Rimmer, Emilio Molinari, Luca Di Fabrizio: Atomic Iron and Titanium in the Atmosphere of an Exoplanet, Nature, 15. August 2018. https://doi.org/10.1038/s41586-018-0401-y

Weitere Informationen:

http://www.unibe.ch/aktuell/medien/media_relations/medienmitteilungen/2018/medie...

Nathalie Matter | Universität Bern

Weitere Berichte zu: Astrophysical Journal Atmosphäre Eisen Exoplanet Jupiter Space Stern Titan

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Forscher untersuchten Wechselwirkungen in künstlichen Systemen
24.09.2018 | Universität Leipzig

nachricht Wie Magnetismus entsteht: Elektronen stärker verbunden als gedacht
21.09.2018 | Forschungszentrum Jülich

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue Therapien bei Gefäßerkrankungen

Auf der Jahrestagung der Deutschen Gesellschaft für Angiologie (DGA) vom 12. bis 15. September in Münster stellten Gefäßspezialisten aus ganz Deutschland die neuesten Therapien bei Gefäßerkrankungen vor. Vor allem in den Bereichen periphere arterielle Verschlusskrankheit (pAVK) und venöse Verschlusskrankheiten wie die Tiefe Venenthrombose (TVT) gibt gute Neuigkeiten für die Patienten. Viele der 720 Gefäßspezialisten, die an der Jahrestagung teilnahmen, stellten neueste Studienergebnisse vor.

Millionen Menschen leiden in Deutschland unter Gefäßerkrankungen, allein rund fünf Millionen unter der „Schaufensterkrankheit“, medizinisch periphere...

Im Focus: Wie Magnetismus entsteht: Elektronen stärker verbunden als gedacht

Wieso sind manche Metalle magnetisch? Diese einfache Frage ist wissenschaftlich gar nicht so leicht fundiert zu beantworten. Das zeigt eine aktuelle Arbeit von Wissenschaftlern des Forschungszentrums Jülich und der Universität Halle. Den Forschern ist es zum ersten Mal gelungen, in einem magnetischen Material, in diesem Fall Kobalt, die Wechselwirkung zwischen einzelnen Elektronen sichtbar zu machen, die letztlich zur Ausbildung der magnetischen Eigenschaften führt. Damit sind erstmals genaue Einblicke in den elektronischen Ursprung des Magnetismus möglich, die vorher nur auf theoretischem Weg zugänglich waren.

Für ihre Untersuchung nutzten die Forscher ein spezielles Elektronenmikroskop, das das Forschungszentrum Jülich am Elettra-Speicherring im italienischen Triest...

Im Focus: Erstmals gemessen: Wie lange dauert ein Quantensprung?

Mit Hilfe ausgeklügelter Experimente und Berechnungen der TU Wien ist es erstmals gelungen, die Dauer des berühmten photoelektrischen Effekts zu messen.

Es war eines der entscheidenden Experimente für die Quantenphysik: Wenn Licht auf bestimmte Materialien fällt, werden Elektronen aus der Oberfläche...

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Der Truck der Zukunft

Lastkraftwagen (Lkw) sind für den Gütertransport auch in den kommenden Jahrzehnten unverzichtbar. Wissenschaftler und Wissenschaftlerinnen der Technischen Universität München (TUM) und ihre Partner haben ein Konzept für den Truck der Zukunft erarbeitet. Dazu zählen die europaweite Zulassung für Lang-Lkw, der Diesel-Hybrid-Antrieb und eine multifunktionale Fahrerkabine.

Laut der Prognose des Bundesministeriums für Verkehr und digitale Infrastruktur wird der Lkw-Güterverkehr bis 2030 im Vergleich zu 2010 um 39 Prozent steigen....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

4. BF21-Jahrestagung „Car Data – Telematik – Mobilität – Fahrerassistenzsysteme – Autonomes Fahren – eCall – Connected Car“

21.09.2018 | Veranstaltungen

Forum Additive Fertigung: So gelingt der Einstieg in den 3D-Druck

21.09.2018 | Veranstaltungen

12. BusinessForum21-Kongress „Aktives Schadenmanagement"

20.09.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Mit traditionellen Methoden gegen extreme Trockenheit

24.09.2018 | Geowissenschaften

Europäische Spitzenforschung auf der EuMW

24.09.2018 | Messenachrichten

Neue Therapien bei Gefäßerkrankungen

24.09.2018 | Medizintechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics