Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Einzelne Lichtquanten führen logische Operationen aus

04.05.2016

MPQ-Wissenschaftler nehmen eine entscheidende Hürde auf dem Weg zu einem logischen Quantengatter für Photonen

Weltweit arbeiten Wissenschaftler an Konzepten für zukünftige Quantencomputer und an deren experimenteller Realisierung. Der typische „Standard-Quantencomputer“ soll nach gängigen Vorstellungen auf einem System von vernetzten Quantenteilchen basieren, die der Speicherung, Kodierung und Verarbeitung von Quanteninformation dienen.


Eine Wolke von kalten Atomen wird mit rotem Signallicht und blauem Kopplungslicht beleuchtet. Die Lichtpulse werden auf dichroitischen Spiegeln (DM) überlagert. Mit Wellenplatten (WP), einem polarisierenden Strahlteiler (PBS), und Avalanche-Photodiode (APD) wird die Polarisation des transmittierten Signallichts bestimmt.

MPQ, Abteilung Quantendynamik

Zentrales Bauelement wäre auch hier, analog zu einem klassischen Computer, ein Quantengatter, das Eingangssignalen eindeutig bestimmte Ausgangssignale zuordnet. Ein Team um Dr. Stephan Dürr aus der Abteilung Quantendynamik von Prof. Gerhard Rempe am Max-Planck-Institut für Quantenoptik hat jetzt in einem Experiment gezeigt, wie sich eine wichtige Gatterfunktion – die Vertauschung der binären Bit-Werte „0“ und „1“ – mit einzelnen Lichtquanten realisieren lässt.

Dabei wird zunächst ein Lichtpuls aus einem einzigen Photon in einer ultrakalten Wolke aus rund 100 000 Rubidiumatomen als Anregung gespeichert. Dies bewirkt, dass ein nachfolgender Lichtpuls beim Durchlaufen der atomaren Wolke eine Phasenverschiebung von 180 Grad erhält (Science Advances, 29. April 2016).

„Photonen eignen sich hervorragend für die Übertragung von Quanteninformation, weil sie mit ihrer Umgebung kaum in Wechselwirkung treten und daher leicht über große Entfernungen übertragen werden können“, erklärt Dr. Stephan Dürr, der Leiter des Projektes. „Aus diesem Grund arbeiten wir an der Entwicklung von Photon-Photon-Quantengattern, bei denen einzelne Lichtpulse einlaufende photonische Qubits determiniert verändern können.“

Bei der Verarbeitung von Daten haben logische Gatter die Aufgabe, eine Wahrheitstabelle umzusetzen, die jeder Bit-Kombination eines Eingangssignals eindeutig Ausgangssignale zuordnet. Dabei kann z.B. der Wert 0 in 1 umgewandelt werden bzw. umgekehrt. Bei einem Photon-Photon-Quantengatter entspricht das dem Vorgang, dass ein einzelnes Photon ein zweites einzelnes Photon gezielt manipuliert. Diese Wechselwirkung kann nur durch Materie vermittelt werden. Allerdings war es bisher nicht gelungen, ein physikalisches System zu finden, in dem diese Wechselwirkung hinreichend stark ist.

In dem vorliegenden Experiment wird eine Wolke aus rund 100 000 Rubidiumatomen auf 0,5 Mikrokelvin gekühlt (Null Kelvin entspricht dem absoluten Nullpunkt der Temperaturskala) und in einer aus mehreren Lichtfeldern gebildeten Dipolfalle gefangen gehalten. Diese atomare Wolke wird mit drei schnell aufeinander folgenden Lichtpulsen bestrahlt. Der erste sogenannte Kontroll-Puls entscheidet darüber, ob der zweite Target-Puls beim Durchgang durch das atomare Gas signifikant verändert wird, d.h., ob die Gatterfunktion ein- oder ausgeschaltet ist. Mit einem dritten Puls wird eine gegebenenfalls gespeicherte Anregung wieder ausgelesen.

Der Trick dabei ist, dass die Lichtpulse zwei Komponenten enthalten. Zum einen das extrem schwache rote Signallicht, dessen Wellenlänge von 780 nm nah-resonant zu einem bestimmten atomaren Übergang ist. Ein Lichtpuls ist dabei so schwach, dass er im Mittel etwa ein Photon enthält. Ohne weitere Maßnahmen würde er die Wolke durchlaufen und dabei eine gewisse Phasenverschiebung erfahren. Erst die Zumischung von relativ intensivem blauen „Kopplungslicht“ mit einer Wellenlänge von 480 nm macht es möglich, das Photon aus dem Signalpuls kontrolliert und reversibel abzuspeichern. Dabei wird ein Atom in der Wolke in einen hochangeregten Rydberg-Zustand überführt, bei dem ein Elektron extrem weit vom Atomkern entfernt ist.

Anschließend werden die Atome mit einem Target-Puls beleuchtet, der ebenfalls sowohl Signallicht als auch Kopplungslicht enthält. Da die Rydberg-Anregung mit anderen Atomen in der Wolke eine weitreichende van-der-Waals-Wechselwirkung hat, verschieben sich gewisse atomare Energieniveaus in der Wolke und sind somit in Bezug auf die Energie des Target-Pulses stärker verstimmt, als wenn vorher kein Kontrollpuls abgespeichert worden wäre.

Aufgrund dieser Verstimmung erfährt der Target-Puls beim Durchgang durch die Atomwolke eine Phasenverschiebung, die sich um 180 Grad von der Phasenverschiebung ohne vorheriges Abspeichern eines Kontrollpulses unterscheidet. „Diese durch die van-der-Waals-Wechselwirkung erzeugte zusätzliche Phasenverschiebung ist der springende Punkt. Denn damit können Quantenzustände generiert werden, die zueinander orthogonal sind, was einem Übergang eines Bit-Wertes von 0 nach 1 entspricht“, führt Dr. Dürr aus. Anschließend wird durch erneute Beleuchtung der Atomwolke, diesmal nur mit Kopplungslicht, das ursprünglich abgespeicherte Signalphoton wieder ausgelesen.

In einer Reihe von Messungen bestimmten die Wissenschaftler mit Hilfe von Wellenplatten und einem polarisierenden Strahlteiler die Polarisation der beiden roten Signalphotonen nach Durchlaufen der atomaren Wolke. Damit wiesen sie nach, dass der Lichtpuls eine zusätzliche Phasenverschiebung von 180 Grad erhalten hatte, wenn der Signallaser während des Kontrollpulses eingeschaltet war. Der ganze Zyklus – vom Speichern des Kontrollpulses über die Propagation des Target-Pulses bis zum Auslesen des Kontrollpulses – dauert dabei insgesamt nur wenige Mikrosekunden.

„Wir konnten zeigen, dass wir mit Hilfe nur eines Kontrollphotons die Polarisationsebene des photonischen Qubits im Target-Puls drehen können“, erläutert Dr. Dürr. „Dies ist eine wichtige Voraussetzung für die Realisierung von Quantengattern. Aber Quantengatter müssen darüber hinaus die Möglichkeit bieten, aus zwei getrennten Anfangszuständen einen verschränkten Endzustand zu erzeugen. Um das zu erreichen, haben wir weiterführende Experimente geplant.“ Olivia Meyer-Streng


Originalveröffentlichung:

Daniel Tiarks, Steffen Schmidt, Gerhard Rempe, Stephan Dürr
Optical Pi Phase Shift Created with a Single-Photon Pulse
Science Advances, 29. April 2016

Kontakt:

Dr. Stephan Dürr
Max-Planck-Institut für Quantenoptik
Telefon: +49 (0)89 / 32 905 - 291
E-Mail: stefan.duerr@mpq.mpg.de

Prof. Dr. Gerhard Rempe
Direktor am Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching b. München
Telefon: +49 (0)89 / 32 905 - 701
E-Mail: gerhard.rempe@mpq.mpg.de

Dr. Olivia Meyer-Streng
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik
Telefon: +49 (0)89 / 32 905 - 213
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik
Weitere Informationen:
http://www.mpq.mpg.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Einzelne Atome im Visier
25.06.2019 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

nachricht Simulierte Synapsen - TU-Forscher berechnen das neuronale Netz des Gehirns
24.06.2019 | Technische Universität Darmstadt

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Einzelne Atome im Visier

Mit der NMR-Spektroskopie ist es in den letzten Jahrzehnten möglich geworden, die räumliche Struktur von chemischen und biochemischen Moleküle zu erfassen. ETH-Forschende haben nun einen Weg gefunden, wie man dieses Messprinzip auf einzelne Atome anwenden kann.

Die Kernspinresonanz-Spektroskopie – kurz NMR-Spektroskopie – ist eine der wichtigsten physikalisch-chemischen Untersuchungsmethoden. Damit lässt sich...

Im Focus: Partielle Mondfinsternis am 16./17. Juli 2019

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde (VdS) und des Hauses der Astronomie in Heidelberg - Wie im letzten Jahr findet auch 2019 eine in den späten Abendstunden in einer lauen Sommernacht gut zu beobachtende Mondfinsternis statt, und zwar in der Nacht vom 16. auf den 17. Juli. Die Finsternis ist zwar nur partiell - der Mond tritt also nicht vollständig in den Erdschatten ein - es ist aber für die nächsten Jahre die einzige gut sichtbare Mondfinsternis im deutschen Sprachraum.

Am Dienstagabend, den 16. Juli, wird ein kosmisches Schauspiel zu sehen sein: Der Vollmond taucht zu einem großen Teil in den Schatten der Erde ein, es findet...

Im Focus: Fraunhofer IDMT zeigt akustische Qualitätskontrolle auf der Fachmesse für Messtechnik »Sensor + Test 2019«

Das Ilmenauer Fraunhofer-Institut für Digitale Medientechnologie IDMT präsentiert vom 25. bis 27. Juni 2019 am Gemeinschaftsstand der Fraunhofer-Gesellschaft (Stand 5-248) seine neue Lösung zur berührungslosen, akustischen Qualitätskontrolle von Werkstücken und Bauteilen. Da die Prüfung zerstörungsfrei funktioniert, kann teurer Prüfschrott vermieden werden. Das Prüfverfahren wird derzeit gemeinsam mit verschiedenen Industriepartnern im praktischen Einsatz erfolgreich getestet und hat das Technology Readiness Level (TRL) 6 erreicht.

Maschinenausfälle, Fertigungsfehler und teuren Prüfschrott reduzieren

Im Focus: Fraunhofer IDMT demonstrates its method for acoustic quality inspection at »Sensor+Test 2019« in Nürnberg

From June 25th to 27th 2019, the Fraunhofer Institute for Digital Media Technology IDMT in Ilmenau (Germany) will be presenting a new solution for acoustic quality inspection allowing contact-free, non-destructive testing of manufactured parts and components. The method which has reached Technology Readiness Level 6 already, is currently being successfully tested in practical use together with a number of industrial partners.

Reducing machine downtime, manufacturing defects, and excessive scrap

Im Focus: Erfolgreiche Praxiserprobung: Bidirektionale Sensorik optimiert das Laserauftragschweißen

Die Qualität generativ gefertigter Bauteile steht und fällt nicht nur mit dem Fertigungsverfahren, sondern auch mit der Inline-Prozessregelung. Die Prozessregelung sorgt für einen sicheren Beschichtungsprozess, denn Abweichungen von der Soll-Geometrie werden sofort erkannt. Wie gut das mit einer bidirektionalen Sensorik bereits beim Laserauftragschweißen im Zusammenspiel mit einer kommerziellen Optik gelingt, demonstriert das Fraunhofer-Institut für Lasertechnik ILT auf der LASER World of PHOTONICS 2019 auf dem Messestand A2.431.

Das Fraunhofer ILT entwickelt optische Sensorik seit rund 10 Jahren gezielt für die Fertigungsmesstechnik. Dabei hat sich insbesondere die Sensorik mit der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

17. Internationale Conference on Carbon Dioxide Utilization in Aachen

25.06.2019 | Veranstaltungen

Meeresleuchten, Klimawandel, Küstenmeere Afrikas – Spannende Vielfalt bei „Warnemünder Abenden 2019“

24.06.2019 | Veranstaltungen

Plastik: Mehr Kreislauf gegen die Krise gefordert

21.06.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Einzelne Atome im Visier

25.06.2019 | Physik Astronomie

Clever Chillen mit weniger Kältemittel: Neue Blue e Chiller von 11 bis 25 kW

25.06.2019 | Energie und Elektrotechnik

Neuer Therapieansatz fördert die Reparatur von Blutgefässen nach einem Hirnschlag

25.06.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics