Einsteins Äquivalenzprinzip besteht einen echten Quantentest

Die ForscherInnen bestätigten die Gültigkeit des Äquivalenzprinzips mit einer relativen Genauigkeit von einigen Milliardstel. Guglielmo M. Tino, Universität Florenz

In einem sagenumwobenen Versuch ließ der italienische Wissenschaftler Galileo Galilei im 16. Jahrhundert angeblich Kugeln unterschiedlicher Masse vom Schiefen Turm von Pisa fallen. Damit soll er gezeigt haben, dass unter dem Einfluss der Gravitation verschiedene Körper mit derselben Beschleunigung fallen.

Die Weiterentwicklung der Kernidee des Galileischen Versuchs durch Albert Einstein, Einsteins Äquivalenzprinzip, führte zur Entstehung einer der Grundsäulen moderner Naturwissenschaft, der Relativitätstheorie.

Nun hat ein internationales Team um Guglielmo Tino (Universität Florenz und INFN) ein Experiment realisiert, das als Quantenanalog des legendären Galileischen Tests betrachtet werden kann. Mit der Expertise von theoretischen PhysikerInnen der Universität Wien, der Österreichischen Akademie der Wissenschaften und der Universität Queensland konnten ForscherInnen der Universitäten Florenz und Bologna und der Europäischen Raumfahrtsbehörde ESA Aspekte der Relativitätstheorie und der Quantenphysik kombinieren, und so ein Schema zur Messung des Einsteinschen Äquivalenzprinzip für ein Quantensystem entwickeln und im Experiment testen.

Ein Quantenlabor ersetzt den Schiefen Turm von Pisa
In der klassischen Physik beschreibt die berühmte relativistische Formel E=mc2, wie die Gesamtmasse eines Systems von seiner Energie abhängt. Im Gegensatz zur klassischen Theorie muss in der Quantentheorie ein System jedoch nicht immer eine bestimmte Energie haben. Es kann gleichzeitig zwei oder mehrere unterschiedliche Energiezustände in einer sogenannten Quantensuperposition einnehmen. Ein Quantensystem kann daher verschiedene Masse-Energien in Superposition aufweisen.

Im aktuellen Versuch maßen die ForscherInnen die durch die Gravitation verursachte Beschleunigung von Rubidium-Atomen. Diese waren von den ForscherInnen in Quantensuperpositionen von verschiedenen inneren Energien gebracht und mittels Laserlicht auf außerordentlich niedrige Temperaturen nahe dem Absoluten Nullpunkt gekühlt worden.

Um ihre Messungen durchzuführen, verwendeten die WissenschafterInnen ein neues Schema, das in der Gruppe in Florenz entwickelt wurde und auf einem Braggschen Atominterferometer beruht. Das Experiment bestätigte die Gültigkeit des Äquivalenzprinzips für Quantensuperpositionen mit einer relativen Genauigkeit von einigen Milliardstel.

„Das Experiment zeigt, dass die Körper, die keine wohl definierte Masse-Energie haben, in derselben Art und Weise fallen, wie jene mit einer bestimmten Masse-Energie. Damit ist die Gültigkeit des Einsteinschen Äquivalenzprinzips im Bereich der Quantenphysik überprüft“, fasst Caslav Brukner, Co-Autor der Publikation, zusammen.

Mögliche Anwendungen
Das im Experiment umgesetzte Schema kann zur Entwicklung neuer Sensoren mit vielfältigen Anwendungen führen: in der Geodäsie, in Studien über Vulkanausbrüche und Erdbeben, bei der Suche nach Mineralvorkommen, in der Trägheitsnavigation sowie bei Präzisionsmessungen von Zeit, Frequenzen, Beschleunigungen und Rotationen, um die grundlegenden Gesetze der Physik auf der Erde und im Weltall zu testen.

Publikation in „Nature Communications“
„Quantum test of the equivalence principle for atoms in superpositions of internal energy eigenstates“, G. Rosi, G. D'Amico, L. Cacciapuoti, F. Sorrentino, M. Prevedelli, M. Zych, C. Brukner, G. M. Tino, Nature Communications
DOI: 10.1038/NCOMMS15529

Wissenschaftlicher Kontakt
Univ.-Prof. Mag. Dr. Caslav Brukner
Fakultät für Physik
Universität Wien
Institut für Quantenoptik und Quanteninformation
Österreichische Akademie der Wissenschaften
Boltzmanngasse 5, 1090 Wien
M +43-664-60277-725 82
caslav.brukner@univie.ac.at

Rückfragehinweise
Alexandra Frey
Pressebüro der Universität Wien
Forschung und Lehre
1010 Wien, Universitätsring 1
T +43-1-4277-175 33
M +43-664-602 77-175 33
alexandra.frey@univie.ac.at

Sven Hartwig
Leiter Öffentlichkeit & Kommunikation
Österreichische Akademie der Wissenschaften
1010 Wien, Dr. Ignaz Seipel-Platz 2
T +43 1 51581-13 31
sven.hartwig@oeaw.ac.at

Offen für Neues. Seit 1365.
Die Universität Wien ist eine der ältesten und größten Universitäten Europas: An 19 Fakultäten und Zentren arbeiten rund 9.600 MitarbeiterInnen, davon 6.800 WissenschafterInnen. Die Universität Wien ist damit die größte Forschungsinstitution Österreichs sowie die größte Bildungsstätte: An der Universität Wien sind derzeit rund 94.000 nationale und internationale Studierende inskribiert. Mit über 175 Studien verfügt sie über das vielfältigste Studienangebot des Landes. Die Universität Wien ist auch eine bedeutende Einrichtung für Weiterbildung in Österreich. http://www.univie.ac.at

Österreichische Akademie der Wissenschaften
Forschen für morgen.
Die Österreichische Akademie der Wissenschaften hat die gesetzliche Aufgabe, „die Wissenschaft in jeder Hinsicht zu fördern“. 1847 als Gelehrtengesellschaft gegründet, steht sie mit ihren heute über 780 Mitgliedern, 28 Forschungsinstituten sowie rund 1.450 Mitarbeiter/innen für innovative Grundlagenforschung, interdisziplinären Wissensaustausch und die Vermittlung neuer Erkenntnisse – mit dem Ziel zum wissenschaftlichen und gesamtgesellschaftlichen Fortschritt beizutragen. http://www.oeaw.ac.at

Media Contact

Stephan Brodicky Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neues topologisches Metamaterial

… verstärkt Schallwellen exponentiell. Wissenschaftlerinnen und Wissenschaftler am niederländischen Forschungsinstitut AMOLF haben in einer internationalen Kollaboration ein neuartiges Metamaterial entwickelt, durch das sich Schallwellen auf völlig neue Art und Weise…

Astronomen entdecken starke Magnetfelder

… am Rand des zentralen schwarzen Lochs der Milchstraße. Ein neues Bild des Event Horizon Telescope (EHT) hat starke und geordnete Magnetfelder aufgespürt, die vom Rand des supermassereichen schwarzen Lochs…

Faktor für die Gehirnexpansion beim Menschen

Was unterscheidet uns Menschen von anderen Lebewesen? Der Schlüssel liegt im Neokortex, der äußeren Schicht des Gehirns. Diese Gehirnregion ermöglicht uns abstraktes Denken, Kunst und komplexe Sprache. Ein internationales Forschungsteam…

Partner & Förderer