Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Einstein-Podolsky-Rosen-Paradoxon erstmals in Vielteilchensystem beobachtet

27.04.2018

Physiker der Universität Basel haben das quantenmechanische Einstein-Podolsky-Rosen Paradoxon erstmals in einem System aus mehreren hundert miteinander wechselwirkenden Atomen beobachtet. Das Phänomen geht auf ein berühmtes Gedankenexperiment aus dem Jahr 1935 zurück. Es erlaubt, präzise Vorhersagen für Messungen zu machen und könnte in neuartigen Sensoren und Abbildungsverfahren für elektromagnetische Felder Verwendung finden. Das berichten die Forscher in der Fachzeitschrift «Science».

Wie präzise kann man die Ergebnisse von Messungen an einem physikalischen System vorhersagen? In der Welt der kleinsten Teilchen, die den Gesetzen der Quantenphysik gehorcht, gibt es eine fundamentale Grenze für die Genauigkeit solcher Vorhersagen. Ausgedrückt wird sie durch die Heisenbergsche Unschärferelation, die besagt, dass man zum Beispiel die Messwerte von Ort und Impuls eines Teilchens oder auch von zwei Komponenten eines Spins nicht gleichzeitig beliebig genau vorhersagen kann.


Eine Wolke aus Atomen wird von elektromagnetischen Feldern über einem Chip gehalten. Zwischen den räumlich getrennten Regionen A und B konnte das EPR-Paradoxon beobachtet werden.

Universität Basel, Departement Physik

Paradoxe Verringerung der Unschärfe

In einer berühmten Arbeit von 1935 haben Albert Einstein, Boris Podolsky und Nathan Rosen theoretisch gezeigt, dass unter bestimmten Umständen jedoch genaue Vorhersagen möglich sind. Dazu betrachteten sie zwei Systeme A und B, die sich in einem sogenannten verschränkten Zustand befinden, in dem ihre Eigenschaften sehr stark korrelieren.

Die Ergebnisse von Messungen an System A können dann dafür verwendet werden, die entsprechenden Messergebnisse an System B im Prinzip beliebig genau vorherzusagen. Dies ist auch dann möglich, wenn die Systeme A und B räumlich getrennt sind. Das Paradoxe dabei ist, dass ein Beobachter durch Messungen an System A präzisere Aussagen über System B machen kann, als ein Beobachter der direkt Zugriff auf System B hat (aber nicht auf A).

Erste Beobachtung in Vielteilchensystem

Experimentell wurde dieses nach den Initialen seiner Entdecker benannte «EPR-Paradoxon» bisher mit Licht oder einzelnen Atomen untersucht. Ein Team von Physikern um Professor Philipp Treutlein vom Departement Physik der Universität Basel und dem Swiss Nanoscience Institute konnte das EPR-Paradoxon nun erstmals mit einem Vielteilchensystem aus mehreren hundert miteinander wechselwirkenden Atomen beobachten.

Im Experiment wurden Atome mithilfe von Lasern auf wenige milliardstel Grad über dem absoluten Nullpunkt gekühlt. Bei diesen Temperaturen verhalten sich die Atome vollkommen quantenmechanisch und bilden ein sogenanntes Bose-Einstein-Kondensat – ein Zustand der Materie, der in einer weiteren bahnbrechenden Arbeit von Einstein 1925 vorhergesagt wurde. In dieser ultrakalten Wolke stossen die Atome ständig zusammen, sodass sich ihre Spins miteinander verschränken.

Anschliessend führten die Forscher Messungen des Spins an räumlich voneinander getrennten Regionen des Kondensats durch. Mittels hochauflösender Bildgebung konnten sie die Spin-Korrelationen zwischen den gesonderten Regionen direkt messen und gleichzeitig die Atome in genau definierten Positionen lokalisieren. Mit ihrem Experiment ist es den Forschern gelungen, auf Grundlage der Messungen in einer bestimmten Region die Ergebnisse für eine andere Region vorherzusagen.

«Die Messergebnisse der beiden Regionen waren so stark miteinander korreliert, dass wir damit das EPR-Paradoxon nachweisen konnten», so Matteo Fadel, Doktorand und Erstautor der Studie. «Es ist faszinierend, ein so fundamentales Phänomen der Quantenphysik an immer grösseren Systemen zu beobachten. Gleichzeitig stellen wir mit unseren Experimenten eine Verbindung zwischen zwei der wichtigsten Arbeiten Einsteins her.»

Auf dem Weg zur Quantentechnologie

Neben der Grundlagenforschung spekulieren die Wissenschaftler bereits über mögliche Anwendungen ihrer Entdeckung. Die vom EPR-Paradoxon ermöglichte Methode könnte beispielsweise atomare Sensoren und Abbildungsmethoden für elektromagnetische Felder verbessern. Die Entwicklung solcher Quantensensoren ist ein Ziel des Nationalen Forschungsschwerpunkts Quantenwissenschaften und -technologie (NCCR QSIT), an dem das Forscherteam aktiv beteiligt ist.

Originalbeitrag

Matteo Fadel, Tilman Zibold, Boris Décamps, and Philipp Treutlein
Spatial entanglement patterns and Einstein-Podolsky-Rosen steering in Bose-Einstein condensates
Science (2018), doi: 10.1126/science.aao1850

Weitere Auskünfte

Prof. Dr. Philipp Treutlein, Universität Basel, Departement Physik, Tel. +41 61 207 37 66, E-Mail: philipp.treutlein@unibas.ch

Reto Caluori | Universität Basel
Weitere Informationen:
http://www.unibas.ch

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Rasende Elektronen unter Kontrolle
16.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Kometen als Wasserträger für Exoplaneten
15.11.2018 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rasende Elektronen unter Kontrolle

Die Elektronik zukünftig über Lichtwellen kontrollieren statt Spannungssignalen: Das ist das Ziel von Physikern weltweit. Der Vorteil: Elektromagnetische Wellen des Licht schwingen mit Petahertz-Frequenz. Damit könnten zukünftige Computer eine Million Mal schneller sein als die heutige Generation. Wissenschaftler der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) sind diesem Ziel nun einen Schritt nähergekommen: Ihnen ist es gelungen, Elektronen in Graphen mit ultrakurzen Laserpulsen präzise zu steuern.

Eine Stromregelung in der Elektronik, die millionenfach schneller ist als heutzutage: Davon träumen viele. Schließlich ist die Stromregelung eine der...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: Eine kalte Supererde in unserer Nachbarschaft

Der sechs Lichtjahre entfernte Barnards Stern beherbergt einen Exoplaneten

Einer internationalen Gruppe von Astronomen unter Beteiligung des Max-Planck-Instituts für Astronomie in Heidelberg ist es gelungen, beim nur sechs Lichtjahre...

Im Focus: Mit Gold Krankheiten aufspüren

Röntgenfluoreszenz könnte neue Diagnosemöglichkeiten in der Medizin eröffnen

Ein Präzisions-Röntgenverfahren soll Krebs früher erkennen sowie die Entwicklung und Kontrolle von Medikamenten verbessern können. Wie ein Forschungsteam unter...

Im Focus: Ein Chip mit echten Blutgefäßen

An der TU Wien wurden Bio-Chips entwickelt, in denen man Gewebe herstellen und untersuchen kann. Die Stoffzufuhr lässt sich dabei sehr präzise dosieren.

Menschliche Zellen in der Petrischale zu vermehren, ist heute keine große Herausforderung mehr. Künstliches Gewebe herzustellen, durchzogen von feinen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Kalikokrebse: Erste Fachtagung zu hochinvasiver Tierart

16.11.2018 | Veranstaltungen

Können Roboter im Alter Spaß machen?

14.11.2018 | Veranstaltungen

Tagung informiert über künstliche Intelligenz

13.11.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Mikroplastik in Kosmetik

16.11.2018 | Studien Analysen

Neue Materialien – Wie Polymerpelze selbstorganisiert wachsen

16.11.2018 | Materialwissenschaften

Anomale Kristalle: ein Schlüssel zu atomaren Strukturen von Schmelzen im Erdinneren

16.11.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics