Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Einstein@Home entdeckt ersten nur im Gammalicht sichtbaren Pulsar

01.03.2018

Das verteilte Rechenprojekt Einstein@Home aggregiert von zehntausenden Freiwilligen aus aller Welt gespendete Rechenleistung. In einer Gamma-Durchmusterung des Himmels hat dieses Netzwerk nun zwei schnell rotierende Pulsare in Daten des Weltraumteleskops Fermi neu entdeckt. Während alle anderen solchen Millisekundenpulsare auch mit Radioteleskopen beobachtbar sind, ist eine der beiden Entdeckungen der erste, der sich nur anhand seiner Gammastrahlung nachweisen lässt. Diese Erkenntnisse erwecken die Hoffnung, weitere Quellen zu finden, z.B. nahe dem Galaktischen Zentrum. Wissenschaftler des AEI Hannover und des MPIfR Bonn haben eng zusammengearbeitet, um diese Entdeckungen zu ermöglichen.

„Wir haben diese zwei neuen Entdeckungen in unserer groß angelegten Gammapulsar-Durchmusterung mit Einstein@Home gemacht. Dieses Kunststück war nur möglich, weil wir neuartige und effizientere Suchmethoden, verbesserte Daten des Fermi Large Area Telescope (LAT), und die gewaltige Rechenleistung von Einstein@Home nutzen konnten“, sagt Dr. Colin Clark vom Jodrell Bank Centre for Astrophysics, Erstautor der nun in Science Advances erschienenen Veröffentlichung, der Doktorand am Max-Planck-Instituts für Gravitationsphysik war, als er die Entdeckungen machte.


Künstlerische Darstellung eines Gammapulsars mit Gammastrahlung (violett) und Radiowellen (grün). Die Rotation entlang der Sichtlinie lässt den Pulsar so periodisch am Himmel aufleuchten.

NASA/Fermi/Cruz de Wilde


Der Gamma-Himmel (Fermi) mit den beiden von Einstein@Home neu entdeckten Pulsaren. Die Flaggen markieren die Nationalitäten der Freiwilligen, deren Computer die Pulsare gefunden haben.

Knispel/Clark/Max Planck Institute for Gravitational Physics/NASA/DOE/Fermi LAT Collaboration

„Nachdem wir die zwei Millisekundenpulsare gefunden hatten, richteten wir ein großes Radioteleskop auf sie und erwarteten, pulsierende Radiostrahlung zu finden, wie es bei allen bis dahin bekannten Millisekundenpulsaren der Fall war. Zu unserer Überraschung blieb eines unserer neu entdeckten Objekte im Radiobereich vollkommen still.“

Dies beweist, dass diese „blinden“ Gammapulsar-Suchprojekte das Potenzial haben, eine bisher unbekannte Population von radiostillen Millisekundenpulsaren aufzuspüren. Diese könnten hinter weiteren nicht identifizierten Fermi-LAT-Quellen oder dem Gammastrahlenglühen aus der Richtung des Galaktischen Zentrums stecken.

In Supernova-Explosionen geboren

Neutronsterne sind kompakte Überreste von Supernova-Explosionen und bestehen aus exotischer und extrem dichter Materie. Sie haben einen Durchmesser von etwa 20 Kilometern und haben mehr Masse als unsere Sonne. Aufgrund ihrer starken Magnetfelder und schnellen Eigendrehung strahlen sie gerichtet Radiowellen und energetische Gammastrahlen ab – ähnlich einem kosmischen Leuchtturm. Wenn diese Strahlen während der Rotation des Neutronensterns in Richtung Erde zeigen, wird dieser als pulsierende Radio- oder Gammastrahlungsquelle sichtbar – als sogenannter Pulsar.

Millisekundenpulsare entstehen, wenn die Drehung eines Pulsars durch von einem Begleitstern aufgesammelte Materie beschleunigt wird. Das einströmende Material vom Partnerstern kann den Pulsar auf bis zu hunderte von Umdrehungen in einer einzelnen Sekunde beschleunigen. Nachdem diese Akkretionsphase endet, lässt sich der schnell rotierende Neutronenstern als Millisekundenpulsar beobachten.

Zwei neue Millisekundenpulsare

Die neue Veröffentlichung beschreibt die Entdeckung von zwei zuvor unbekannten Gammapulsaren, die nach ihren jeweiligen Himmelspositionen PSR J1035−6720 und PSR J1744−7619 heißen. Der erste von diesen beiden stadtgroßen Neutronensternen dreht sich jeder Sekunde schwindelerregende 348 Mal, der zweite 213 Mal. Nach der Entdeckung bestimmten die Forscher deren astrophysikalischen Parameter durch eine Neuanalyse der Fermi-Daten mit hoher Genauigkeit.

Diese verbesserten Parameter kamen dann zum Einsatz, um nach der pulsierenden Radiostrahlung der beiden Quellen in Archivdaten und in neuen Beobachtungen des Parkes-Radioteleskop zu suchen. Während PSR J1035−6720 sich als ungewöhnlich schwacher Radiomillisekundenpulsar zeigte, fand man überhaupt keine Radiowellen von PSR J1744−7619. Damit ist er der erste jemals entdeckte radiostille Millisekundenpulsar.

Eine verborgene Pulsarpopulation

Es ist möglich, dass die leuchtturmähnlichen Radiostrahlen von PSR J1744−7619 nicht in Richtung der Erde zeigen, die Gammastrahlen das hingegen tun. Die Wissenschaftler untersuchten diese Frage, indem sie die beobachtete Gammastrahlung mit theoretischen Modellen verglichen. Sie zeigten, dass die Modelle, die die Gammastrahlung gut beschreiben, ein nachweisbares Radiosignal vorhersagen. Dessen Abwesenheit bedeutet, dass PSR J1744−7619 entweder nur sehr schwach im Radiobereich strahlt oder dass die Modelle unvollständig sind.

Nach einigen Vorhersagen lässt sich der beobachtete Überschuss von energiereicher Gammastrahlung aus dem Zentralbereich der Milchstraße mit einer verborgenen Population von tausenden Millisekundenpulsaren erklären. Derzeitige große Radioteleskope könnten nur eine Handvoll von diesen nachweisen, aber Gammapulsar-Suchprogramme könnten bessere Chancen haben, eine deutlich höhere Anzahl von diesen Quellen nachzuweisen.

Einstein@Home sucht nach Gammapulsaren in Doppelsternsystemen

„Mit der Hilfe unserer Freiwilligen haben wir 152 nicht identifizierte pulsar-ähnliche Quellen aus dem Fermi-LAT-Katalog untersucht“, sagt Prof. Dr. Bruce Allen, Direktor von Einstein@Home und Direktor am Max-Planck-Institut für Gravitationsphysik. „Wir haben gezeigt, dass 19 von diesen nicht nur wie Pulsare aussehen, sondern tatsächlich auch Pulsare sind und in einigen Fällen sogar noch sehr ungewöhnliche Objekte. Ich persönlich würde wetten, dass viele von den verbleibenden 133 auch Pulsare sind, die sich in Doppelsternsystemen befinden, wo sie schwieriger zu finden sind. Im Moment spürt Einstein@Home diesen Binärpulsaren nach und ich hoffe, dass wir bald einige finden werden.“

„Dies ist ein wundervolles Beispiel moderner Astrophysik: Wir nutzen die Expertise aus der Gravitationswellen-Astronomie, um Gamma-Daten clever zu analysieren und damit Quellen zu entdecken, die unser Wissen aus Radiobeobachtungen ergänzen. Großartig“, ergänzt Michael Kramer, Direktor am Max-Planck-Institut für Radioastronomie, Leiter der dortigen Arbeitsgruppe „Radioastronomische Fundamentalphysik“ und Koautor der Veröffentlichung.

Wer hat die Entdeckungen gemacht?

Zehntausende Einstein@Home-Freiwillige, die dem Projekt Rechenzeit gespendet haben, haben die Entdeckungen ermöglicht. Ohne sie hätte die Durchmusterung nicht durchgeführt werden und hätten diese Entdeckungen nicht gemacht werden können. Das Team dankt insbesondere den Freiwilligen, deren Computer die zwei Pulsare entdeckten, die in der Science-Advances-Publikation vorgestellt werden. (In den Fällen, wo der Name des Freiwilligen unbekannt oder privat ist, geben wir den Einstein@Home-Benutzernamen an.)

• PSR J1035−6720: “WSyS”; Kurt Kovacs aus Seattle Washington, USA; und der ATLAS Cluster, AEI Hannover.
• PSR J1744−7619: Darrell Hoberer aus Gainesville, TX, USA; der ATLAS Cluster, AEI Hannover; Igor Yakushin aus Chicago, IL, USA und das LIGO Laboratory, USA; und Keith Pickstone aus Oldham, UK.

Originalveröffentlichung:

Clark, C. J. et al. „Einstein@Home Discovers a Radio-quiet Gamma-ray Millisecond Pulsar”, Science Advances (2018)

Wissenschaftskontakt:

Dr. Colin Clark
Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, The University of Manchester
Fon: +49 511 762-17187
E-mail: colin.clark-2@manchester.ac.uk

Prof. Dr. Bruce Allen
Direktor und Leiter der Forschungsabteilung “Beobachtungsbasierte Relativität und Kosmologie”; Einstein@Home-Direktor
Max-Planck-Institut für Gravitationsphysik, Hannover
Fon: +49 511 762-17148
E-mail: bruce.allen@aei.mpg.de

Prof. Dr. Michael Kramer
Direktor und Leiter der Forschungsabteilung “Radioastronomische Fumndamentalphysik”
Max-Planck-Institut für Radioastronomie, Bonn.
Fon: +49 228 525-278
E-mail: mkramer@mpifr-bonn.mpg.de

Medienkontakt:

Dr. Benjamin Knispel
Referent für Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Gravitationsphysik, Hannover
Fon: +49 511 762-19104
E-mail: benjamin.knispel@aei.mpg.de

Dr. Norbert Junkes,
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Radioastronomie, Bonn.
Fon: +49 228 525-399
E-mail: njunkes@mpifr-bonn.mpg.de

Weitere Informationen:

https://www.mpifr-bonn.mpg.de/pressemeldungen/2018/2

Norbert Junkes | Max-Planck-Institut für Radioastronomie

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Hannoveraner Physiker entwickelt neue Photonenquelle für abhörsichere Kommunikation
30.03.2020 | Leibniz Universität Hannover

nachricht Stabile Blasen und ein Wasserläufer bewahren Stahl vor Erosion
30.03.2020 | Otto-von-Guericke-Universität Magdeburg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hannoveraner Physiker entwickelt neue Photonenquelle für abhörsichere Kommunikation

Ein internationales Team unter Beteiligung von Prof. Dr. Michael Kues vom Exzellenzcluster PhoenixD der Leibniz Universität Hannover hat eine neue Methode zur Erzeugung quantenverschränkter Photonen in einem zuvor nicht zugänglichen Spektralbereich des Lichts entwickelt. Die Entdeckung kann die Verschlüsselung von satellitengestützter Kommunikation künftig viel sicherer machen.

Ein 15-köpfiges Forscherteam aus Großbritannien, Deutschland und Japan hat eine neue Methode zur Erzeugung und zum Nachweis quantenverstärkter Photonen bei...

Im Focus: Physicist from Hannover Develops New Photon Source for Tap-proof Communication

An international team with the participation of Prof. Dr. Michael Kues from the Cluster of Excellence PhoenixD at Leibniz University Hannover has developed a new method for generating quantum-entangled photons in a spectral range of light that was previously inaccessible. The discovery can make the encryption of satellite-based communications much more secure in the future.

A 15-member research team from the UK, Germany and Japan has developed a new method for generating and detecting quantum-entangled photons at a wavelength of...

Im Focus: Nachwuchswissenschaftler der Universität Rostock erfinden einen Trichter für Lichtteilchen

Physiker der Arbeitsgruppe von Professor Alexander Szameit an der Universität Rostock ist es in Zusammenarbeit mit Kollegen von der Universität Würzburg gelungen, einen „Trichter für Licht“ zu entwickeln, der bisher nicht geahnte Möglichkeiten zur Entwicklung von hypersensiblen Sensoren und neuen Technologien in der Informations- und Kommunikationstechnologie eröffnet. Die Forschungsergebnisse wurden jüngst im renommierten Fachblatt Science veröffentlicht.

Der Rostocker Physikprofessor Alexander Szameit befasst sich seit seinem Studium mit den quantenoptischen Eigenschaften von Licht und seiner Wechselwirkung mit...

Im Focus: Junior scientists at the University of Rostock invent a funnel for light

Together with their colleagues from the University of Würzburg, physicists from the group of Professor Alexander Szameit at the University of Rostock have devised a “funnel” for photons. Their discovery was recently published in the renowned journal Science and holds great promise for novel ultra-sensitive detectors as well as innovative applications in telecommunications and information processing.

The quantum-optical properties of light and its interaction with matter has fascinated the Rostock professor Alexander Szameit since College.

Im Focus: Künstliche Intelligenz findet das optimale Werkstoffrezept

Die möglichen Eigenschaften nanostrukturierter Schichten sind zahllos – wie aber ohne langes Experimentieren die optimale finden? Ein Team der Materialforschung der Ruhr-Universität Bochum (RUB) hat eine Abkürzung ausprobiert: Mit einem Machine-Learning-Algorithmus konnten die Forscher die strukturellen Eigenschaften einer solchen Schicht zuverlässig vorhersagen. Sie berichten in der neuen Fachzeitschrift „Communications Materials“ vom 26. März 2020.

Porös oder dicht, Säulen oder Fasern

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

“4th Hybrid Materials and Structures 2020” findet web-basiert statt

26.03.2020 | Veranstaltungen

Wichtigste internationale Konferenz zu Learning Analytics findet statt – komplett online

23.03.2020 | Veranstaltungen

UN World Water Day 22 March: Water and climate change - How cities and their inhabitants can counter the consequences

17.03.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Hannoveraner Physiker entwickelt neue Photonenquelle für abhörsichere Kommunikation

30.03.2020 | Physik Astronomie

Brillen-Flora: das Miniversum vor der Nase

30.03.2020 | Biowissenschaften Chemie

Neue Materialien: Strahlendes Weiß ohne Pigmente

30.03.2020 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics