Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Einsame Atome glücklich vereint

26.07.2016

Das erstaunliche Verhalten von Platin-Atomen auf Magnetitoberflächen soll bessere Katalysatoren ermöglichen. An der TU Wien konnte erklärt werden, wie sich Platin-Atome mit Hilfe von Kohlenmonoxid verbinden lassen.

Magnetit ist ein unscheinbares, dunkelgraues Material. Dass es ein Star der Oberflächenphysik ist, offenbart sich erst auf atomarer Skala: Magnetit kann Metallatome festhalten oder über seine Oberfläche wandern lassen.


Experimente in der Vakuumkammer, TU Wien.

TU Wien


Zwei Platinatome auf der Magnetitoberfläche können eine Bindung eingehen, wenn sie mit CO-Molekülen verbunden sind.

TU Wien

Manchmal ballen sich mehrere Metallatome auf der Magnetit-Oberfläche auch zu kleinen Clustern zusammen. Solche Vorgänge können die chemischen Eigenschaften des Materials maßgeblich beeinflussen: Die atomaren Prozesse auf der Magnetit-Oberfläche entscheiden, wie gut verschiedene Metallatome auf Magnetit als Katalysator für chemische Reaktionen dienen können.

An der TU Wien gelang es nun, einzelne Platin-Atome und ihr Zusammenwachsen zu winzigen Clustern zu untersuchen. Kohlenmonoxid spielt dabei eine doppelte Rolle: Es macht einzelne Platin-Atome beweglich und ermöglicht ihnen, Zweierbindungen einzugehen. Gleichzeitig stabilisiert es diese Bindungen. Nur indem man die Temperatur erhöht, wird diese Bindung wieder aufgelöst.

Einsame Atome

Es klingt ein bisschen wie eine unglückliche Liebesgeschichte: „Zwei Platin-Atome wollen eigentlich zusammen sein, aber die Magnetit-Oberfläche hindert sie daran“, erklärt Roland Bliem vom Institut für angewandte Physik der TU Wien. Gemeinsam mit Prof. Gareth Parkinson, Prof. Ulrike Diebold und anderen KollegInnen des Teams für Oberflächenphysik analysierte er das Verhalten von Platin-Atomen mit Hilfe eines Rastertunnelmikroskops.

„Wenn die Platin-Atome auf die Magnetit-Oberfläche stoßen, werden sie dort von den Sauerstoffatomen des Magnetits festgehalten – und zwar immer einzeln, eine Bindung zweier Platinatome, wie sie auf anderen Oberflächen bevorzugt vorkommen würde, erlaubt die Magnetit-Oberfläche nicht“, sagt Roland Bliem. Die Platin-Atome sitzen daher einsam an ganz bestimmten Stellen des Magnetit-Kristallgitters und können sich ohne äußere Hilfe von dort nie wieder wegbewegen.

Doch wenn man die Oberfläche in Kontakt mit ein bisschen Kohlenmonoxid bringt, ändert sich die Situation völlig: „Ein Kohlenmonoxid-Molekül kann an das Platinatom andocken, und es gewissermaßen nach oben heben“, erklärt Gareth Parkinson. „Wir nennen das den Skyhook-Effekt: Kohlenmonoxid macht das Platin-Atom mobil, plötzlich beginnt der Komplex aus Platin-Atom und Kohlenmonoxid zufällig über die Magnetit-Oberfläche zu wandern.“

Wenn das mobile Platin-Atom auf seiner Wanderung auf ein anderes mobiles Platin-Atom trifft, dann erst können die beiden eine Bindung eingehen – das funktioniert nur, wenn beide von Kohlenmonoxid-Molekülen angehoben und damit dem Zugriff der Magnetitoberfläche ein kleines bisschen entzogen werden.

Wenn die Temperatur dann auf etwa 250°C erhöht wird, trennt sich das Kohlenmonoxid wieder vom Platin-Atom, und die Bindung ist nicht länger möglich. Die Zweierbindungen brechen auf und die Platinatome lagern sich wieder einsam an unterschiedlichen Plätzen der Magnetitoberfläche an. Dieses Phänomen liefert eine Strategie, aus Clustern wieder einzelne Atome zu gewinnen– ein wichtiger Prozess auf dem Weg zu Katalysatoren, die auf einzelnen Metallatomen basieren. Manchmal bilden sich auch Cluster aus mehreren Platin-Atomen – sie bleiben auch bei erhöhter Temperatur bestehen.

Filme mit atomarer Auflösung

„In unserem Rastertunnelmikroskop bilden wir denselben Teil der Oberfläche immer wieder ab, sodass wir daraus einen Film erstellen können, der die tanzenden Atome zeigt“, sagt Roland Bliem. „Um zu verstehen, was auf dem Magnetit tatsächlich passiert, ist das ganz entscheidend: Wir können einzelnen Atomen dabei zusehen, wie sie über die Magnetitoberfläche wandern oder sich miteinander verbinden.

Hätten wir nur ein Bild vom Endresultat, könnten wir nicht genau erkennen, ob eine bestimmte Struktur aus einem, zwei oder mehreren Atomen besteht. Erst indem es uns gelingt, die Bewegungen einzelner Atome zeitlich nachzuvollziehen, können wir die Bilder richtig interpretieren.“ Bliem führte nicht nur Experimente durch, er stellte auch aufwändige theoretische Berechnungen an, um das merkwürdige Verhalten der Platinatome auf quantenphysikalischer Ebene zu erklären.

Für die chemische Katalyse spielen solche Erkenntnisse eine wichtiger Rolle: „Metalle wie Platin sind wichtige Katalysatoren“, sagt Gareth Parkinson. „Aber es kann sein, dass ein großer Cluster aus vielen Metall-Atomen ganz andere katalytische Eigenschaften hat als mehrere einzelne Metall-Atome, die getrennt voneinander auf der Oberfläche sitzen. Wenn man also optimale Katalysatoren herstellen will, dann muss man das Verhalten der Atome auf der Magnetitoberfläche verstehen und steuern können.“

Fotodownload: https://www.tuwien.ac.at/dle/pr/aktuelles/downloads/2016/magnetit

Roland Bliema, Jessi E. S. van der Hoevenb, Jan Hulvaa, Jiri Paveleca, Oscar Gambaa, Petra E. de Jonghb, Michael Schmida, Peter Blahac, Ulrike Diebolda, and Gareth S. Parkinson (2016). "Dual role of CO in the stability of subnano Pt clusters at the Fe3O4(001) surface". PNAS: http://www.pnas.org/content/early/2016/07/22/1605649113.abstract

Rückfragehinweise:

Dipl.-Ing. Roland Bliem
Institut für Angewandte Physik
Technische Universität Wien
Wiedner Hauptstraße 8-10, 1040 Wien
T: +43-1-58801-13466
roland.bliem@tuwien.ac.at

Gareth Parkinson, PhD
Institut für Angewandte Physik
Technische Universität Wien
Wiedner Hauptstraße 8-10, 1040 Wien
T: +43-1-58801-13473
gareth.parkinson@tuwien.ac.at

Aussender:
Büro für Öffentlichkeitsarbeit
Technische Universität Wien
Operngasse 11, 1040 Wien
T: +43-1-58801-41022
pr@tuwien.ac.at

Materials & Matter ist – neben Computational Science & Engineering, Quantum Physics & Quantum Technologies, Information & Communication Technology sowie Energy & Environment – einer von fünf Forschungsschwerpunkten der Technischen Universität Wien. Geforscht wird von der Nanowelt bis hin zur Entwicklung neuer Werkstoffe für großvolumige Anwendungen. Die Forschenden arbeiten sowohl theoretisch, beispielsweise an mathematischen Modellen im Computer, wie auch experimentell an der Entwicklung und Erprobung innovativer Materialien.


TU Wien - Mitglied der TU Austria
www.tuaustria.at

Weitere Informationen:

https://www.tuwien.ac.at/dle/pr/aktuelles/downloads/2016/magnetit
http://www.pnas.org/content/early/2016/07/22/1605649113.abstract

Dr. Florian Aigner | Technische Universität Wien

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Lumineszierende Gläser als Basis neuer Leuchtstoffe zur Optimierung von LED
17.10.2019 | Fraunhofer-Institut für Mikrostruktur von Werkstoffen und Systemen IMWS

nachricht Blindgänger mit Laser entschärft: Erfolgreicher Feldversuch zum Projektende
16.10.2019 | Laser Zentrum Hannover e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste Ameise der Welt - Wüstenflitzer haben kurze Beine, aber eine perfekte Koordination

Silberameisen gelten als schnellste Ameisen der Welt - obwohl ihre Beine verhältnismäßig kurz sind. Daher haben Forschende der Universität Ulm den besonderen Laufstil dieses "Wüstenflitzers" auf einer Ameisen-Rennstrecke ergründet. Veröffentlicht wurde diese Entdeckung jüngst im „Journal of Experimental Biology“.

Sie geht auf Nahrungssuche, wenn andere Siesta halten: Die saharische Silberameise macht vor allem in der Mittagshitze der Sahara und in den Wüsten der...

Im Focus: Fraunhofer FHR zeigt kontaktlose, zerstörungsfreie Qualitätskontrolle von Kunststoffprodukten auf der K 2019

Auf der K 2019, der Weltleitmesse für die Kunststoff- und Kautschukindustrie vom 16.-23. Oktober in Düsseldorf, demonstriert das Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR das breite Anwendungsspektrum des von ihm entwickelten Millimeterwellen-Scanners SAMMI® im Kunststoffbereich. Im Rahmen des Messeauftritts führen die Wissenschaftler die vielseitigen Möglichkeiten der Millimeterwellentechnologie zur kontaktlosen, zerstörungsfreien Prüfung von Kunststoffprodukten vor.

Millimeterwellen sind in der Lage, nicht leitende, sogenannte dielektrische Materialien zu durchdringen. Damit eigen sie sich in besonderem Maße zum Einsatz in...

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: Rätsel gelöst: Das Quantenleuchten dünner Schichten

Eine ganz spezielle Art von Licht wird von Wolfram-Diselenid-Schichten ausgesandt. Warum das so ist, war bisher unklar. An der TU Wien wurde nun eine Erklärung gefunden.

Es ist ein merkwürdiges Phänomen, das jahrelang niemand erklären konnte: Wenn man einer dünnen Schicht des Materials Wolfram-Diselenid Energie zuführt, dann...

Im Focus: Wie sich Reibung bei topologischen Isolatoren kontrollieren lässt

Topologische Isolatoren sind neuartige Materialien, die elektrischen Strom an der Oberfläche leiten, sich im Innern aber wie Isolatoren verhalten. Wie sie auf Reibung reagieren, haben Physiker der Universität Basel und der Technischen Universität Istanbul nun erstmals untersucht. Ihr Experiment zeigt, dass die durch Reibung erzeugt Wärme deutlich geringer ausfällt als in herkömmlichen Materialien. Dafür verantwortlich ist ein neuartiger Quantenmechanismus, berichten die Forscher in der Fachzeitschrift «Nature Materials».

Dank ihren einzigartigen elektrischen Eigenschaften versprechen topologische Isolatoren zahlreiche Neuerungen in der Elektronik- und Computerindustrie, aber...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Wenn der Mensch auf Künstliche Intelligenz trifft

17.10.2019 | Veranstaltungen

Verletzungen des Sprunggelenks immer ärztlich abklären lassen

16.10.2019 | Veranstaltungen

Digitalisierung trifft Energiewende

15.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Dehnbare Elektronik: Neues Verfahren vereinfacht Herstellung funktionaler Prototypen

17.10.2019 | Materialwissenschaften

Lumineszierende Gläser als Basis neuer Leuchtstoffe zur Optimierung von LED

17.10.2019 | Physik Astronomie

Dank Hochfrequenz wird Kommunikation ins All möglich

17.10.2019 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics