Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Eingebaute Germanium-Laser könnten Computer-Chips schneller machen

10.09.2012
Forscher des Paul Scherrer Instituts haben untersucht, wie man das Halbleitermaterial Germanium dazu bringen könnte, Laserlicht auszusenden.

Als Lasermaterial könnte Germanium mit Silizium die Grundlage für neuartige Computerchips bilden, in denen Informationen zum Teil in Form von Licht übertragen würden.

Diese Technologie würde es ermöglichen, den Datenfluss auf Chips zu revolutionieren und so die Leistung der Elektronik weiter voranzutreiben. Die Forscher haben gezeigt, dass man Germanium mit einer äusseren Kraft verformen muss, damit es zu einem Lasermaterial wird.

Im Jahr 1965 hat Gordon Moore die Regel aufgestellt, dass sich die Flächendichte von Transistoren auf Computerchips – und damit die Rechenleistung – etwa alle zwei Jahre verdoppelt. Das Gesetz gilt seit dem Beginn der digitalen Zeitrechnung, also seit Einführung der ersten integrierten Schaltkreise für Mikro-Prozessoren im Jahr 1960. Trotz der steigenden Anzahl Transistoren in Computerchips und weiterer Fortschritte kann die Gesamtleistung der Prozessoren dem Moore'schen Gesetz seit etwa einer Dekade nicht mehr folgen – Fachleute sprechen vom Moore’schen Gap (Lücke). Grund ist, dass die modernen Chips mehrere Kerne – eigenständige Prozessoren – haben, die mit herkömmlichen Verfahren nur relativ langsam miteinander kommunizieren.

„Tatsächlich kennt man einen Weg, wie diese Lücke geschlossen werden kann: das Zauberwort heisst optische Datenübertragung zwischen den verschiedenen Kernen auf dem Chip“, erklärt Hans Sigg, Forscher am Paul Scherrer Institut. „Das heisst, man würde die Information innerhalb eines Computerchips teilweise mithilfe von Lichtpulsen übertragen, was den Informationsfluss stark beschleunigen könnte.“ Dafür bräuchte man winzige Laser, die man in Chips einbauen könnte und die dort Lichtpulse aussenden würden. Diese sind aber bislang nicht verfügbar.

Winzige Germanium-Laser sollen Chips schneller machen

Nun konnte Siggs Forschungsteam zusammen mit Kollegen der ETH Zürich und des Politecnico di Milano zeigen, dass Germanium unter bestimmten Bedingungen als Lasermaterial dienen könnte. „Germaniumlaser könnten hier den Durchbruch bringen, weil Germanium sich gut mit Silizium kombinieren lässt, aus dem die Chips gebaut sind. Silizium selbst kann kein Licht aussenden, und es lässt sich kaum mit verfügbaren Lasermaterialien kombinieren“, betont Sigg.
In ihren Untersuchungen haben die Forschenden die Eigenschaften des Germaniums untersucht, die für die Erzeugung von Laserlicht wichtig sind und sie mit denen herkömmlicher Lasermaterialien verglichen. Die Experimente haben sie an der Synchrotron Lichtquelle Schweiz des Paul Scherrer Instituts durchgeführt. „Wir regen mit einem starken Laser das Material an und können gleichzeitig die Veränderungen mithilfe von Infrarotlicht aus der SLS beobachten“, erläutert der Doktorand Peter Friedli, der die entscheidenden Experimente zusammen mit dem Forscher Lee Carroll, durchgeführt hat. „Dabei nutzen wir aus, dass diese Lichtpulse nur 100 Picosekunden, also 0,1 Milliardstelsekunden lang sind, und wir deshalb die relevanten Vorgänge im Material, also das Verhalten der Elektronen zu verschiedenen Zeitpunkten, verfolgen können.“

Germanium muss verspannt sein
„Unsere Ergebnisse, sind einerseits ermutigend: Germanium verhält sich ähnlich wie traditionelle Lasermaterialien – damit ist die Möglichkeit von Lichtemission nicht ausgeschlossen“, sagt Sigg erfreut, schränkt jedoch ein: „Die Balance zwischen Verstärkung und Verlust ist in den bislang untersuchten Germanium-Schichten noch so ungünstig, dass das Material die Bedingung für die Erzeugung von Laserlicht noch nicht erfüllt.“ Dabei hat sich aber gezeigt, dass man dieser Bedingung umso näher kommt, je stärker man das Germanium mit einer äusseren Kraft verformt. Die Forscher hoffen, in einem Folgeprojekt die nötigen Bedingungen für das Germanium zu erreichen. Dazu werden sie eine neue Technologie nutzen, die es erlaubt, diese Verspannungen stark zu erhöhen.

Das Forschungsprojekt wurde vom Schweizerischen Nationalfonds SNF gefördert.

Text: Paul Piwnicki

Über das PSI
Das Paul Scherrer Institut entwickelt, baut und betreibt grosse und komplexe Forschungsanlagen und stellt sie der nationalen und internationalen Forschungsgemeinde zur Verfügung. Eigene Forschungsschwerpunkte sind Materie und Material, Mensch und Gesundheit, sowie Energie und Umwelt. Mit 1500 Mitarbeitenden und einem Jahresbudget von rund 300 Mio. CHF ist es das grösste Forschungsinstitut der Schweiz.

Kontakt: Dr. Hans Sigg, Labor für Mikro- und Nanotechnologie; Paul Scherrer Institut, 5232 Villigen PSI, Schweiz; +41 56 310 40 48, hans.sigg@psi.ch
Originalveröffentlichung:
Direct-Gap Gain and Optical Absorption in Germanium Correlated to the Density of Photoexcited Carriers, Doping, and Strain
Lee Carroll, Peter Friedli, Stefan Neuenschwander, Hans Sigg, Stefano Cecchi, Fabio Isa, Daniel Chrastina, Giovanni Isella, Yuriy Fedoryshyn, Jérôme Faist
Phys. Rev. Lett. 109, 057402 (2012); DOI: 10.1103/PhysRevLett.109.057402 http://dx.doi.org/10.1103/PhysRevLett.109.057402

Hintergrundartikel zur verwendeten Methode:
Ultra-broadband infrared pump-probe spectroscopy using synchrotron radiation and a tuneable pump
Lee Carroll, Peter Friedli, Philippe Lerch, Jörg Schneider, Daniel Treyer, Stephan Hunziker, Stefan Stutz, and Hans Sigg

Rev. Sci. Instrum. 82, 063101 (2011); DOI: 10.1063/1.3592332 http://dx.doi.org/10.1063/1.3592332

Dagmar Baroke | Paul Scherrer Institut (PSI)
Weitere Informationen:
http://www.psi.ch
http://www.psi.ch/media/eingebaute-germanium-laser-koennten-computer-chips-schneller-machen

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Filmpremiere mit Super-Mikroskop und Nanoröhrchen: Erstmals Entstehen von Atom-Verbindungen im Bewegtbild festgehalten
20.01.2020 | Universität Ulm

nachricht Zwanzig Jahre Röntgenauge im All
20.01.2020 | Leibniz-Institut für Astrophysik Potsdam

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gendefekt bei Zellbaustein Aktin sorgt für massive Entwicklungsstörungen

Europäische Union fördert Forschungsprojekt „PredActin“ mit 1,2 Millionen Euro

Aktin ist ein wichtiges Strukturprotein in unserem Körper. Als Hauptbestandteil des Zellgerüstes sorgt es etwa dafür, dass unsere Zellen eine stabile Form...

Im Focus: Programmable nests for cells

KIT researchers develop novel composites of DNA, silica particles, and carbon nanotubes -- Properties can be tailored to various applications

Using DNA, smallest silica particles, and carbon nanotubes, researchers of Karlsruhe Institute of Technology (KIT) developed novel programmable materials....

Im Focus: Miniatur-Doppelverglasung: Wärmeisolierendes und gleichzeitig wärmeleitendes Material entwickelt

Styropor oder Kupfer – beide Materialien weisen stark unterschiedliche Eigenschaften auf, was ihre Fähigkeit betrifft, Wärme zu leiten. Wissenschaftlerinnen und Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz und der Universität Bayreuth haben nun gemeinsam ein neuartiges, extrem dünnes und transparentes Material entwickelt und charakterisiert, welches richtungsabhängig unterschiedliche Wärmeleiteigenschaften aufweist. Während es in einer Richtung extrem gut Wärme leiten kann, zeigt es in der anderen Richtung gute Wärmeisolation.

Wärmeisolation und Wärmeleitung spielen in unserem Alltag eine entscheidende Rolle – angefangen von Computerprozessoren, bei denen es wichtig ist, Wärme...

Im Focus: Miniature double glazing: Material developed which is heat-insulating and heat-conducting at the same time

Styrofoam or copper - both materials have very different properties with regard to their ability to conduct heat. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz and the University of Bayreuth have now jointly developed and characterized a novel, extremely thin and transparent material that has different thermal conduction properties depending on the direction. While it can conduct heat extremely well in one direction, it shows good thermal insulation in the other direction.

Thermal insulation and thermal conduction play a crucial role in our everyday lives - from computer processors, where it is important to dissipate heat as...

Im Focus: Fraunhofer IAF errichtet ein Applikationslabor für Quantensensorik

Um den Transfer von Forschungsentwicklungen aus dem Bereich der Quantensensorik in industrielle Anwendungen voranzubringen, entsteht am Fraunhofer IAF ein Applikationslabor. Damit sollen interessierte Unternehmen und insbesondere regionale KMU sowie Start-ups die Möglichkeit erhalten, das Innovationspotenzial von Quantensensoren für ihre spezifischen Anforderungen zu evaluieren. Sowohl das Land Baden-Württemberg als auch die Fraunhofer-Gesellschaft fördern das auf vier Jahre angelegte Vorhaben mit jeweils einer Million Euro.

Das Applikationslabor wird im Rahmen des Fraunhofer-Leitprojekts »QMag«, kurz für Quantenmagnetometrie, errichtet. In dem Projekt entwickeln Forschende von...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

11. Tagung Kraftwerk Batterie - Advanced Battery Power Conference am 24-25. März 2020 in Münster/Germany

16.01.2020 | Veranstaltungen

Leben auf dem Mars: Woher kommt das Methan?

16.01.2020 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - März 2020

16.01.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neuer Schneidkopf beschleunigt die Wartung von Hochdruckwasserstrahl-Anlagen und senkt Kosten

20.01.2020 | Maschinenbau

Gendefekt bei Zellbaustein Aktin sorgt für massive Entwicklungsstörungen

20.01.2020 | Medizin Gesundheit

Plättchen statt Kügelchen machen Bildschirme sparsam

20.01.2020 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics