Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Eine Nano-Einbahnstraße für Licht

14.12.2015

An der TU Wien gelang es, ein optisches Element auf der Nanoskala zu erzeugen, das Licht nur in eine Richtung durchlässt. Dazu wurden Alkali-Atome an dünne Glasfasern gekoppelt.

Wenn Licht sich von links nach rechts ausbreiten kann, dann ist normalerweise auch die umgekehrte Richtung möglich. Lichtstrahlen lassen sich gewöhnlich mit einem einfachen Spiegel bis zu ihrer Quelle in sich zurückwerfen.


Nur eine Richtung ist erlaubt

An der TU Wien wurde nun eine neue Methode entwickelt, mit der man diese Regel brechen kann. Durch Atome, die an dünne Glasfasern gekoppelt werden, lässt sich eine Einbahnstraße für das Licht bauen. So wie eine Diode elektrischen Strom nur in eine Richtung durchlässt, kann das Licht die Glasfaser nur in eine Richtung passieren.

Diese Einbahnregelung gilt auch dann noch, wenn das Licht bloß aus einzelnen Photonen besteht. Eine solche Einbahnstraße soll sich nun auch in integrierten optischen Chips einbauen lassen – ein wichtiger Schritt für die optische Signalverarbeitung.

Signalverarbeitung mit Licht statt Elektronik

Als „optische Isolatoren“ bezeichnet man Elemente, die Licht in einer Richtung durchlassen und in der anderen Richtung blockieren. „Solche Komponenten gibt es schon lange“, sagt Prof. Arno Rauschenbeutel vom Atominstitut der TU Wien.

„Die meisten bisherigen optischen Isolatoren beruhen auf dem sogenannten Faraday-Effekt: Man legt ein starkes Magnetfeld an ein transparentes Material an, das sich zwischen zwei gegeneinander verdrehten Polarisationsfiltern befindet. Die Richtung des Magnetfelds legt dann fest, in welche Richtung Licht diese Anordnung passieren kann.“

Auf den Größenskalen der Nanotechnologie lässt sich ein solches Bauteil mit Faraday-Effekt aber aus technischen Gründen nicht realisieren. Und das ist schade, denn Bedarf dafür gäbe es genug. „Man versucht heute, optische integrierte Schaltkreise zu bauen, mit ähnlichen Funktionen wie man sie aus der Elektronik kennt“, erklärt Rauschenbeutel.

Andere Methoden, die Symmetrie des Lichts zu brechen, funktionieren nur bei sehr hohen Lichtintensitäten – in der Nanotechnologie möchte man aber winzige Lichtsignale verarbeiten können, bis hin zu Lichtpulsen, die bloß aus einzelnen Photonen bestehen.

Glasfasern und Atome

Das Team von Arno Rauschenbeutel geht einen ganz anderen Weg: Man koppelt Alkali-Atome an das Lichtfeld in ultradünnen Glasfasern. In einem Glasfaserkabel kann sich das Licht in zwei Richtungen ausbreiten – vorwärts und rückwärts. Allerdings gibt es bei Licht noch eine weitere Eigenschaft, die man berücksichtigen muss: Die Schwingungsrichtung der Lichtwelle, auch Polarisation genannt.

Durch die Wechselwirkung zwischen der Lichtwelle und der ultradünnen Glasfaser wird ihr Schwingungszustand verändert. „Die Polarisation dreht sich wie der Rotor eines Helikopters“, sagt Arno Rauschenbeutel. Die Drehrichtung hängt dabei davon ab, ob das Licht in der Glasfaser vorwärts oder rückwärts läuft. Einmal schwingt das Licht im Uhrzeigersinn, einmal dagegen. Ausbreitungsrichtung und Schwingungszustand des Lichts sind also fest miteinander verknüpft.

Wenn man nun Alkali-Atome richtig präpariert und an die ultradünne Glasfaser koppelt, kann man erreichen, dass sie sich bezüglich der beiden Licht-Rotationsrichtungen unterschiedlich verhalten. „Das Licht in der Vorwärtsrichtung wird von den angekoppelten Atomen nicht beeinflusst. Das Licht in der Rückwärtsrichtung allerdings, das sich andersherum dreht, koppelt an die Alkali-Atome an und wird von diesen aus der Glasfaser gestreut“, sagt Arno Rauschenbeutel.

Der Atomzustand als Quanten-Schalter

Dieser Effekt wurde im Labor an der TU Wien auf zwei verschiedene Arten demonstriert: Zunächst wurden etwa 30 Cäsiumatome entlang der Glasfaser aufgereiht. Dabei misst man eine hohe Transmission von fast 80% in einer Richtung, in der anderen Richtung lassen die Atome fast zehnmal weniger Licht passieren. In einem zweiten Experiment verwendete man sogar nur ein einziges Rubidiumatom. Hier wurde allerdings das Licht in einem sogenannten optischen Mikroresonator zwischengespeichert, sodass es für relativ lange Zeit in Kontakt mit dem Atom treten konnte. Auch auf diese Weise lässt sich die Transmission mit derselben Effizienz kontrollieren.

„Wenn wir nur ein einziges Atom verwenden, können wir den Prozess noch viel subtiler steuern“, erklärt Rauschenbeutel. „Man kann dieses Atom dann in einen Zustand versetzen, in dem es das Licht sowohl sperrt als auch durchlässt.“ Nach den Regeln der klassischen Physik ist das unmöglich – in der Quantenphysik sind solche Überlagerungen unterschiedlicher Zustände aber erlaubt. Damit würden sich ganz neue, spannende Möglichkeiten für die optische Verarbeitung von Quanteninformation ergeben.

Rückfragehinweis:
Prof. Arno Rauschenbeutel
Atominstitut
Vienna Center for Quantum Science and Technology
Technische Universität Wien
Stadionallee 2, 1020 Wien
T: +43-1-58801-141761
arno.rauschenbeutel@tuwien.ac.at

Weitere Informationen:

http://journals.aps.org/prx/abstract/10.1103/PhysRevX.5.041036 Originalpublikation
https://www.tuwien.ac.at/dle/pr/aktuelles/downloads/2015/nano_einbahnstrasse/ Bilderdownload

Dr. Florian Aigner | Technische Universität Wien

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Physiker entdecken neuen Transportmechanismus von Nanopartikeln durch Zellmembranen
14.12.2018 | Universität des Saarlandes

nachricht Tanz mit dem Feind
12.12.2018 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: Quantenkryptographie ist bereit für das Netz

Wiener Quantenforscher der ÖAW realisierten in Zusammenarbeit mit dem AIT erstmals ein quantenphysikalisch verschlüsseltes Netzwerk zwischen vier aktiven Teilnehmern. Diesen wissenschaftlichen Durchbruch würdigt das Fachjournal „Nature“ nun mit einer Cover-Story.

Alice und Bob bekommen Gesellschaft: Bisher fand quantenkryptographisch verschlüsselte Kommunikation primär zwischen zwei aktiven Teilnehmern, zumeist Alice...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Tödliche Kombination: Medikamenten-Cocktail dreht Krebszellen den Saft ab

Zusammen mit einem Blutdrucksenker hemmt ein häufig verwendetes Diabetes-Medikament gezielt das Krebswachstum – dies haben Forschende am Biozentrum der Universität Basel vor zwei Jahren entdeckt. In einer Folgestudie, die kürzlich in «Cell Reports» veröffentlicht wurde, berichten die Wissenschaftler nun, dass dieser Medikamenten-Cocktail die Energieversorgung von Krebszellen kappt und sie dadurch abtötet.

Das oft verschriebene Diabetes-Medikament Metformin senkt nicht nur den Blutzuckerspiegel, sondern hat auch eine krebshemmende Wirkung. Jedoch ist die gängige...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Tagung 2019 in Essen: LED Produktentwicklung – Leuchten mit aktuellem Wissen

14.12.2018 | Veranstaltungen

Pro und Contra in der urologischen Onkologie

14.12.2018 | Veranstaltungen

Konferenz zu Usability und künstlicher Intelligenz an der Universität Mannheim

13.12.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Tagung 2019 in Essen: LED Produktentwicklung – Leuchten mit aktuellem Wissen

14.12.2018 | Veranstaltungsnachrichten

Rittal heizt ein in Sachen Umweltschutz - Rittal Lackieranlage sorgt für warme Verwaltungsbüros

14.12.2018 | Unternehmensmeldung

Krankheiten entstehen, wenn das Netzwerk von regulatorischen Autoantikörpern aus der Balance gerät

14.12.2018 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics