Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Einblicke in den Nanokosmos mit bisher unerreichter Detailschärfe und Schnelligkeit

29.01.2016

Experiment liefert fundamentale Erkenntnisse über die Physik stark überhitzter Materie / Publikation in Nature Photonics erschienen

Einem deutsch-amerikanischem Team um die TU-Physikerin Tais Gorkhover und Christoph Bostedt vom Argonne National Laboratory und Northwestern University in Chicago ist es gelungen, Explosionen von einzelnen freien Nanopartikeln mit einem Superröntgenmikroskop zu filmen.

Dabei wurde erstmals eine Auflösung von unter 8 Nanometern mit einer sehr hohen zeitlichen Auflösung von 100 Femtosekunden kombiniert. Die Belichtungszeit der Aufnahme war so kurz, dass die schnellen gasförmigen Teilchen auf den Bildern wie „eingefroren“ erschienen und deswegen nicht – wie in der Mikroskopie üblich – fixiert werden mussten.

Dr. Tais Gorkhover forscht am TU-Institut für Optik und Atomare Physik in der Arbeitsgruppe Cluster und Nanokristalle, die von Prof. Dr. Thomas Möller geleitet wird. Ihre Forschungen finden im Rahmen eines Peter Paul Ewald-Fellowship der Volkswagen-Stiftung an dem SLAC Großforschungslabor der Stanford-Universität in den USA statt.

Für die Experimente benutzte das Forscherteam einen einzigartigen Röntgenlaser (Freie Elektronen Laser), der extrem kurze und intensive Röntgenblitze produzieren kann. Die Ergebnisse der Forschungen wurden nun in Nature Photonics publiziert: DOI: 10.1038/NPHOTON.2015.264

Moderne Abbildungsverfahren sind stark begrenzt, wenn eine Kombination aus hoher Auflösung und extremer Schnelligkeit benötigt wird. Schnelle optische Bildgebungsverfahren konzentrieren sich meist nur auf makroskopische Objekte. Elektronenmikroskope produzieren wesentlich schärfere Bilder, allerdings leidet im Gegenzug die zeitliche Auflösung unter der langen Belichtungszeit.

Dieser Umstand führte bis jetzt dazu, dass ultraschnelle Prozesse in freien Nanoteilchen nicht direkt abgebildet werden konnten. Dabei ist das Verständnis von solchen Abläufen fundamental wichtig für ein breites Spektrum an Fragestellungen, reichend von der Klimamodellierung bis zur Nanotechnologie.

Generell können freie Nanopartikel ihre Eigenschaften stark verändern, sobald sie auf Oberflächen fixiert werden. Um die zu untersuchenden Teilchen und ihre Dynamik möglichst unberührt abbilden zu können, wurden die Teilchen deshalb während des freien Fluges durch eine Vakuumkammer abgelichtet. Die winzigen Partikel mit Durchmessern von 40 Nanometern (vergleichbar mit etwa Eintausendstel der Dicke eines menschlichen Haares) bestanden aus festem Xenon.

Die Teilchen wurden mit einem intensiven optischen Laser ionisiert, stark erhitzt und zum Explodieren gebracht, um anschließend mit Röntgenblitzen beleuchtet zu werden. Aus einer Vielzahl von Bildern wurde ein Film aus einzelnen Explosionen zusammengesetzt.

„Zu unserer Überraschung schienen die explodierenden Teilchen im Laufe der Zeit kleiner zu werden, anstatt, wie erwartet, zu expandieren“, sagt Tais Gorkhover. Dieses unerwartete Ergebnis konnte schließlich mit theoretischen Modellen erklärt werden, in denen die Teilchen nicht gleichmäßig expandieren, sondern von außen nach innen „schmelzen“.

Ein weiterer interessanter Aspekt dieser neuen Methode ist, dass es erstmals gelang, Dynamiken von einzelnen freien Nanoteilchen direkt abzubilden. Bisher basierten die meisten zeitaufgelösten Studien auf der Beobachtung von vielen Partikeln und damit auf durchschnittlichen Werten. Dabei können fundamentale Unterschiede, die zum Beispiel mit der Größe, der Position und der Beschaffenheit der Teilchen zusammenhängen, leicht übersehen werden.

„Wir haben bereits in früheren statischen Experimenten bestätigt, dass man mit dieser Herangehensweise unerwartete Effekte entdecken kann, die vorher nicht wahrgenommen wurden. Nun steht dieser Ansatz endlich auch für zeitaufgelöste Abbildungsverfahren zur Verfügung”, sagt Gorkhover.

„Unser Experiment liefert nicht nur fundamentale Einblicke in die Physik von stark überhitzter Materie, sondern ebnet den Weg für eine Vielzahl von zukünftigen Experimenten, die schnelle Dynamiken mit hoher Auflösung in freischwebenden Teilchen untersuchen wollen”, erklärt Christoph Bostedt. Solche Dynamiken sind zum Beispiel bei der Bildung von Aerosolen wichtig, die einen Großteil der Sonnenstrahlung reflektieren können und daher für Klimamodelle bedeutsam sind. Auch die Forschung an lasergetriebenen Fusionsreaktoren und das Gebiet der Nanoplasmonik, einem neuen Gebiet in der Nanotechnologie, wo die Eigenschaften von Nanoteilchen mit intensiven Lichtfeldern kontrolliert werden, könnten von der neuen Methodik profitieren.

Originalveröffentlichung:
Tais Gorkhover and Christoph Bostedt et al.: Femtosecond and nanometre visualization of structural dynamics in superheated nanoparticles, DOI: 10.1038/NPHOTON.2015.264


Weitere Informationen erteilen Ihnen gern:
Tais Gorkhover
TU Berlin
Arbeitsgruppe Cluster und Nanokristalle

derzeit am:
SLAC National Accelerator Laboratory
Phone: +1 (650) 926 2227
E-Mail: taisgork@slac.stanford.edu

Christoph Bostedt
Argonne National Laboratory / Northwestern University
Phone +1 630 252 1268
Email: cbostedt@anl.gov

Stefanie Terp | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.tu-berlin.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Rasende Elektronen unter Kontrolle
16.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Kometen als Wasserträger für Exoplaneten
15.11.2018 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rasende Elektronen unter Kontrolle

Die Elektronik zukünftig über Lichtwellen kontrollieren statt Spannungssignalen: Das ist das Ziel von Physikern weltweit. Der Vorteil: Elektromagnetische Wellen des Licht schwingen mit Petahertz-Frequenz. Damit könnten zukünftige Computer eine Million Mal schneller sein als die heutige Generation. Wissenschaftler der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) sind diesem Ziel nun einen Schritt nähergekommen: Ihnen ist es gelungen, Elektronen in Graphen mit ultrakurzen Laserpulsen präzise zu steuern.

Eine Stromregelung in der Elektronik, die millionenfach schneller ist als heutzutage: Davon träumen viele. Schließlich ist die Stromregelung eine der...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: Eine kalte Supererde in unserer Nachbarschaft

Der sechs Lichtjahre entfernte Barnards Stern beherbergt einen Exoplaneten

Einer internationalen Gruppe von Astronomen unter Beteiligung des Max-Planck-Instituts für Astronomie in Heidelberg ist es gelungen, beim nur sechs Lichtjahre...

Im Focus: Mit Gold Krankheiten aufspüren

Röntgenfluoreszenz könnte neue Diagnosemöglichkeiten in der Medizin eröffnen

Ein Präzisions-Röntgenverfahren soll Krebs früher erkennen sowie die Entwicklung und Kontrolle von Medikamenten verbessern können. Wie ein Forschungsteam unter...

Im Focus: Ein Chip mit echten Blutgefäßen

An der TU Wien wurden Bio-Chips entwickelt, in denen man Gewebe herstellen und untersuchen kann. Die Stoffzufuhr lässt sich dabei sehr präzise dosieren.

Menschliche Zellen in der Petrischale zu vermehren, ist heute keine große Herausforderung mehr. Künstliches Gewebe herzustellen, durchzogen von feinen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Kalikokrebse: Erste Fachtagung zu hochinvasiver Tierart

16.11.2018 | Veranstaltungen

Können Roboter im Alter Spaß machen?

14.11.2018 | Veranstaltungen

Tagung informiert über künstliche Intelligenz

13.11.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Mikroplastik in Kosmetik

16.11.2018 | Studien Analysen

Neue Materialien – Wie Polymerpelze selbstorganisiert wachsen

16.11.2018 | Materialwissenschaften

Anomale Kristalle: ein Schlüssel zu atomaren Strukturen von Schmelzen im Erdinneren

16.11.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics